{"title":"低能宇宙射线:密集星际介质的调节器","authors":"Stefano Gabici","doi":"10.1007/s00159-022-00141-2","DOIUrl":null,"url":null,"abstract":"<div><p>Low-energy cosmic rays (up to the GeV energy domain) play a crucial role in the physics and chemistry of the densest phase of the interstellar medium. Unlike interstellar ionising radiation, they can penetrate large column densities of gas, and reach molecular cloud cores. By maintaining there a small but not negligible gas ionisation fraction, they dictate the coupling between the plasma and the magnetic field, which in turn affects the dynamical evolution of clouds and impacts on the process of star and planet formation. The cosmic-ray ionisation of molecular hydrogen in interstellar clouds also drives the rich interstellar chemistry revealed by observations of spectral lines in a broad region of the electromagnetic spectrum, spanning from the submillimetre to the visual band. Some recent developments in various branches of astrophysics provide us with an unprecedented view on low-energy cosmic rays. Accurate measurements and constraints on the intensity of such particles are now available both for the very local interstellar medium and for distant interstellar clouds. The interpretation of these recent data is currently debated, and the emerging picture calls for a reassessment of the scenario invoked to describe the origin and/or the transport of low-energy cosmic rays in the Galaxy.</p></div>","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"30 1","pages":""},"PeriodicalIF":27.8000,"publicationDate":"2022-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Low-energy cosmic rays: regulators of the dense interstellar medium\",\"authors\":\"Stefano Gabici\",\"doi\":\"10.1007/s00159-022-00141-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Low-energy cosmic rays (up to the GeV energy domain) play a crucial role in the physics and chemistry of the densest phase of the interstellar medium. Unlike interstellar ionising radiation, they can penetrate large column densities of gas, and reach molecular cloud cores. By maintaining there a small but not negligible gas ionisation fraction, they dictate the coupling between the plasma and the magnetic field, which in turn affects the dynamical evolution of clouds and impacts on the process of star and planet formation. The cosmic-ray ionisation of molecular hydrogen in interstellar clouds also drives the rich interstellar chemistry revealed by observations of spectral lines in a broad region of the electromagnetic spectrum, spanning from the submillimetre to the visual band. Some recent developments in various branches of astrophysics provide us with an unprecedented view on low-energy cosmic rays. Accurate measurements and constraints on the intensity of such particles are now available both for the very local interstellar medium and for distant interstellar clouds. The interpretation of these recent data is currently debated, and the emerging picture calls for a reassessment of the scenario invoked to describe the origin and/or the transport of low-energy cosmic rays in the Galaxy.</p></div>\",\"PeriodicalId\":785,\"journal\":{\"name\":\"The Astronomy and Astrophysics Review\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":27.8000,\"publicationDate\":\"2022-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astronomy and Astrophysics Review\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00159-022-00141-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astronomy and Astrophysics Review","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00159-022-00141-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Low-energy cosmic rays: regulators of the dense interstellar medium
Low-energy cosmic rays (up to the GeV energy domain) play a crucial role in the physics and chemistry of the densest phase of the interstellar medium. Unlike interstellar ionising radiation, they can penetrate large column densities of gas, and reach molecular cloud cores. By maintaining there a small but not negligible gas ionisation fraction, they dictate the coupling between the plasma and the magnetic field, which in turn affects the dynamical evolution of clouds and impacts on the process of star and planet formation. The cosmic-ray ionisation of molecular hydrogen in interstellar clouds also drives the rich interstellar chemistry revealed by observations of spectral lines in a broad region of the electromagnetic spectrum, spanning from the submillimetre to the visual band. Some recent developments in various branches of astrophysics provide us with an unprecedented view on low-energy cosmic rays. Accurate measurements and constraints on the intensity of such particles are now available both for the very local interstellar medium and for distant interstellar clouds. The interpretation of these recent data is currently debated, and the emerging picture calls for a reassessment of the scenario invoked to describe the origin and/or the transport of low-energy cosmic rays in the Galaxy.
期刊介绍:
The Astronomy and Astrophysics Review is a journal that covers all areas of astronomy and astrophysics. It includes subjects related to other fields such as laboratory or particle physics, cosmic ray physics, studies in the solar system, astrobiology, instrumentation, and computational and statistical methods with specific astronomical applications. The frequency of review articles depends on the level of activity in different areas. The journal focuses on publishing review articles that are scientifically rigorous and easily comprehensible. These articles serve as a valuable resource for scientists, students, researchers, and lecturers who want to explore new or unfamiliar fields. The journal is abstracted and indexed in various databases including the Astrophysics Data System (ADS), BFI List, CNKI, CNPIEC, Current Contents/Physical, Chemical and Earth Sciences, Dimensions, EBSCO Academic Search, EI Compendex, Japanese Science and Technology, and more.