{"title":"利用多层陶瓷电容器进行空间温度映射的柔性温度传感器阵列的制造与评价","authors":"Ji-Sung Yoon, Kwang-Seok Yun","doi":"10.1186/s40486-023-00172-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the development of a flexible temperature sensor array using multi-layer ceramic capacitors. By integrating the capacitors into a 5 × 5 array on a polydimethylsiloxane (PDMS) substrate, we exploit the principle of changing dielectric constant with temperature, which results in a change in capacitance. Our sensor array demonstrates a consistent decrease in capacitance with increasing temperature, with a sensitivity ranging from 1.42 to 1.62 pF/°C. This sensitivity range is maintained even when measurements are taken using a capacitance-to-voltage conversion circuit, with a sensitivity of 1.1 to 1.5 mV/°C. The repeatability and hysteresis of the sensors were also investigated, with the latter revealing a maximum error of 12.7%. Our findings provide valuable insights for the development of efficient, flexible, and reliable temperature sensor arrays using ceramic capacitors.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"11 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-023-00172-z","citationCount":"0","resultStr":"{\"title\":\"Fabrication and evaluation of a flexible temperature sensor array using multi-layer ceramic capacitors for spatial temperature mapping\",\"authors\":\"Ji-Sung Yoon, Kwang-Seok Yun\",\"doi\":\"10.1186/s40486-023-00172-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents the development of a flexible temperature sensor array using multi-layer ceramic capacitors. By integrating the capacitors into a 5 × 5 array on a polydimethylsiloxane (PDMS) substrate, we exploit the principle of changing dielectric constant with temperature, which results in a change in capacitance. Our sensor array demonstrates a consistent decrease in capacitance with increasing temperature, with a sensitivity ranging from 1.42 to 1.62 pF/°C. This sensitivity range is maintained even when measurements are taken using a capacitance-to-voltage conversion circuit, with a sensitivity of 1.1 to 1.5 mV/°C. The repeatability and hysteresis of the sensors were also investigated, with the latter revealing a maximum error of 12.7%. Our findings provide valuable insights for the development of efficient, flexible, and reliable temperature sensor arrays using ceramic capacitors.</p></div>\",\"PeriodicalId\":704,\"journal\":{\"name\":\"Micro and Nano Systems Letters\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-023-00172-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40486-023-00172-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-023-00172-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Fabrication and evaluation of a flexible temperature sensor array using multi-layer ceramic capacitors for spatial temperature mapping
This paper presents the development of a flexible temperature sensor array using multi-layer ceramic capacitors. By integrating the capacitors into a 5 × 5 array on a polydimethylsiloxane (PDMS) substrate, we exploit the principle of changing dielectric constant with temperature, which results in a change in capacitance. Our sensor array demonstrates a consistent decrease in capacitance with increasing temperature, with a sensitivity ranging from 1.42 to 1.62 pF/°C. This sensitivity range is maintained even when measurements are taken using a capacitance-to-voltage conversion circuit, with a sensitivity of 1.1 to 1.5 mV/°C. The repeatability and hysteresis of the sensors were also investigated, with the latter revealing a maximum error of 12.7%. Our findings provide valuable insights for the development of efficient, flexible, and reliable temperature sensor arrays using ceramic capacitors.