{"title":"拉格朗日坐标系下二维和三维Euler-Boussinesq方程精确解的一种方法","authors":"Tomi Saleva, Jukka Tuomela","doi":"10.1007/s00021-023-00835-2","DOIUrl":null,"url":null,"abstract":"<div><p>We study the Boussinesq approximation for the incompressible Euler equations using Lagrangian description. The conditions for the Lagrangian fluid map are derived in this setting, and a general method is presented to find exact fluid flows in both the two-dimensional and the three-dimensional case. There is a vast amount of solutions obtainable with this method and we can only showcase a handful of interesting examples here, including a Gerstner type solution to the two-dimensional Euler–Boussinesq equations. In two earlier papers we used the same method to find exact Lagrangian solutions to the homogeneous Euler equations, and this paper serves as an example of how these same ideas can be extended to provide solutions also to related, more involved models.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-023-00835-2.pdf","citationCount":"0","resultStr":"{\"title\":\"A Method for Finding Exact Solutions to the 2D and 3D Euler–Boussinesq Equations in Lagrangian Coordinates\",\"authors\":\"Tomi Saleva, Jukka Tuomela\",\"doi\":\"10.1007/s00021-023-00835-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the Boussinesq approximation for the incompressible Euler equations using Lagrangian description. The conditions for the Lagrangian fluid map are derived in this setting, and a general method is presented to find exact fluid flows in both the two-dimensional and the three-dimensional case. There is a vast amount of solutions obtainable with this method and we can only showcase a handful of interesting examples here, including a Gerstner type solution to the two-dimensional Euler–Boussinesq equations. In two earlier papers we used the same method to find exact Lagrangian solutions to the homogeneous Euler equations, and this paper serves as an example of how these same ideas can be extended to provide solutions also to related, more involved models.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00021-023-00835-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-023-00835-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00835-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Method for Finding Exact Solutions to the 2D and 3D Euler–Boussinesq Equations in Lagrangian Coordinates
We study the Boussinesq approximation for the incompressible Euler equations using Lagrangian description. The conditions for the Lagrangian fluid map are derived in this setting, and a general method is presented to find exact fluid flows in both the two-dimensional and the three-dimensional case. There is a vast amount of solutions obtainable with this method and we can only showcase a handful of interesting examples here, including a Gerstner type solution to the two-dimensional Euler–Boussinesq equations. In two earlier papers we used the same method to find exact Lagrangian solutions to the homogeneous Euler equations, and this paper serves as an example of how these same ideas can be extended to provide solutions also to related, more involved models.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.