V. L. Ugolkov, N. A. Koval’chuk, A. V. Osipov, L. P. Mezentseva
{"title":"溶胶-凝胶法制备纳米粉体及锆/氧化锆陶瓷复合材料","authors":"V. L. Ugolkov, N. A. Koval’chuk, A. V. Osipov, L. P. Mezentseva","doi":"10.1134/S1087659623600540","DOIUrl":null,"url":null,"abstract":"<p>Nanosized precursor powders of (1 – <i>x</i>)ZrSiO<sub>4</sub>‒<i>x</i>ZrO(OH)<sub>2</sub> are synthesized by the sol-gel method with the separate precipitation of components to obtain (1 – <i>x</i>)ZrSiO<sub>4</sub>‒<i>x</i>ZrO<sub>2</sub> ceramic composites. The thermal behavior of precursor powders is studied by differential scanning calorimetry and thermogravimetry (DSC/TG). Ceramic composites with a high level of microhardness are obtained by sintering powders, preliminarily calcined at 850°C, in air in the temperature range 1000‒1300°C. In the future, such ceramic composites can be used as matrices for solidification and isolating high-level waste (HLW).</p>","PeriodicalId":580,"journal":{"name":"Glass Physics and Chemistry","volume":"49 5","pages":"503 - 509"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sol-Gel Synthesis of Nanosized Powders and Obtaining Ceramic Composites Based on Zircon and Zirconium Oxide\",\"authors\":\"V. L. Ugolkov, N. A. Koval’chuk, A. V. Osipov, L. P. Mezentseva\",\"doi\":\"10.1134/S1087659623600540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanosized precursor powders of (1 – <i>x</i>)ZrSiO<sub>4</sub>‒<i>x</i>ZrO(OH)<sub>2</sub> are synthesized by the sol-gel method with the separate precipitation of components to obtain (1 – <i>x</i>)ZrSiO<sub>4</sub>‒<i>x</i>ZrO<sub>2</sub> ceramic composites. The thermal behavior of precursor powders is studied by differential scanning calorimetry and thermogravimetry (DSC/TG). Ceramic composites with a high level of microhardness are obtained by sintering powders, preliminarily calcined at 850°C, in air in the temperature range 1000‒1300°C. In the future, such ceramic composites can be used as matrices for solidification and isolating high-level waste (HLW).</p>\",\"PeriodicalId\":580,\"journal\":{\"name\":\"Glass Physics and Chemistry\",\"volume\":\"49 5\",\"pages\":\"503 - 509\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glass Physics and Chemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1087659623600540\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass Physics and Chemistry","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1087659623600540","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Sol-Gel Synthesis of Nanosized Powders and Obtaining Ceramic Composites Based on Zircon and Zirconium Oxide
Nanosized precursor powders of (1 – x)ZrSiO4‒xZrO(OH)2 are synthesized by the sol-gel method with the separate precipitation of components to obtain (1 – x)ZrSiO4‒xZrO2 ceramic composites. The thermal behavior of precursor powders is studied by differential scanning calorimetry and thermogravimetry (DSC/TG). Ceramic composites with a high level of microhardness are obtained by sintering powders, preliminarily calcined at 850°C, in air in the temperature range 1000‒1300°C. In the future, such ceramic composites can be used as matrices for solidification and isolating high-level waste (HLW).
期刊介绍:
Glass Physics and Chemistry presents results of research on the inorganic and physical chemistry of glass, ceramics, nanoparticles, nanocomposites, and high-temperature oxides and coatings. The journal welcomes manuscripts from all countries in the English or Russian language.