矩形空腔中蒸发纳米流体薄层的热毛细对流

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-09-25 DOI:10.1007/s12217-023-10076-7
Yuequn Tao, Qiusheng Liu, Jun Qin, Zhiqiang Zhu
{"title":"矩形空腔中蒸发纳米流体薄层的热毛细对流","authors":"Yuequn Tao,&nbsp;Qiusheng Liu,&nbsp;Jun Qin,&nbsp;Zhiqiang Zhu","doi":"10.1007/s12217-023-10076-7","DOIUrl":null,"url":null,"abstract":"<div><p>Thermocapillary convection of nanofluid with evaporating phase change interface occurs in a variety of industrial processes such as micro/nano fabrication, ink-jet printing, thin film coatings, etc. Previous studies have mostly focused on the phenomena of thermocapillary convection in pure fluids without phase change. This paper reports the first fundamental experimental work on the thermocapillary flow of a thin nanofluid layer under the effect of evaporation. This research focuses on the behavior of a volatile thin nanofluid layer in a rectangular test cell under the effects of horizontal temperature gradient. The buoyancy effect can be neglected inside this thin liquid layer as in microgravity conditions. HEE7200 and HFE7200-Al<sub>2</sub>O<sub>3</sub> nanofluid are used as working fluids to analyze the effect of nanoparticle addition. The results indicate that the linear relationship between the thickness of the liquid layer and the duration of evaporation is not changed by nanoparticles. HFE7200-Al<sub>2</sub>O<sub>3</sub> nanofluid always has a higher evaporation rate than its base fluid with the temperature ranging from 2.98 °C to 13.92 °C. The critical Marangoni number for the nanofluid is lower than that of the pure fluid, which indicates that the addition of nanoparticles promotes the flow pattern transition.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermocapillary Convection of Evaporating Thin Nanofluid Layer in a Rectangular Cavity\",\"authors\":\"Yuequn Tao,&nbsp;Qiusheng Liu,&nbsp;Jun Qin,&nbsp;Zhiqiang Zhu\",\"doi\":\"10.1007/s12217-023-10076-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermocapillary convection of nanofluid with evaporating phase change interface occurs in a variety of industrial processes such as micro/nano fabrication, ink-jet printing, thin film coatings, etc. Previous studies have mostly focused on the phenomena of thermocapillary convection in pure fluids without phase change. This paper reports the first fundamental experimental work on the thermocapillary flow of a thin nanofluid layer under the effect of evaporation. This research focuses on the behavior of a volatile thin nanofluid layer in a rectangular test cell under the effects of horizontal temperature gradient. The buoyancy effect can be neglected inside this thin liquid layer as in microgravity conditions. HEE7200 and HFE7200-Al<sub>2</sub>O<sub>3</sub> nanofluid are used as working fluids to analyze the effect of nanoparticle addition. The results indicate that the linear relationship between the thickness of the liquid layer and the duration of evaporation is not changed by nanoparticles. HFE7200-Al<sub>2</sub>O<sub>3</sub> nanofluid always has a higher evaporation rate than its base fluid with the temperature ranging from 2.98 °C to 13.92 °C. The critical Marangoni number for the nanofluid is lower than that of the pure fluid, which indicates that the addition of nanoparticles promotes the flow pattern transition.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-023-10076-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10076-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有蒸发相变界面的纳米流体热毛细管对流存在于微纳制造、喷墨打印、薄膜涂层等多种工业过程中。以往的研究多集中在纯流体中无相变的热毛细对流现象。本文报道了在蒸发作用下纳米流体薄层热毛细流动的首次基础实验工作。本文主要研究了水平温度梯度作用下矩形测试槽内挥发性纳米流体薄层的行为。在微重力条件下,浮力效应可以忽略不计。以HEE7200和HFE7200-Al2O3纳米流体为工质,分析纳米颗粒的添加效果。结果表明,纳米颗粒没有改变液层厚度与蒸发时间之间的线性关系。在2.98℃~ 13.92℃范围内,HFE7200-Al2O3纳米流体的蒸发速率始终高于其基液。纳米流体的临界Marangoni数低于纯流体的临界Marangoni数,表明纳米颗粒的加入促进了流型的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermocapillary Convection of Evaporating Thin Nanofluid Layer in a Rectangular Cavity

Thermocapillary convection of nanofluid with evaporating phase change interface occurs in a variety of industrial processes such as micro/nano fabrication, ink-jet printing, thin film coatings, etc. Previous studies have mostly focused on the phenomena of thermocapillary convection in pure fluids without phase change. This paper reports the first fundamental experimental work on the thermocapillary flow of a thin nanofluid layer under the effect of evaporation. This research focuses on the behavior of a volatile thin nanofluid layer in a rectangular test cell under the effects of horizontal temperature gradient. The buoyancy effect can be neglected inside this thin liquid layer as in microgravity conditions. HEE7200 and HFE7200-Al2O3 nanofluid are used as working fluids to analyze the effect of nanoparticle addition. The results indicate that the linear relationship between the thickness of the liquid layer and the duration of evaporation is not changed by nanoparticles. HFE7200-Al2O3 nanofluid always has a higher evaporation rate than its base fluid with the temperature ranging from 2.98 °C to 13.92 °C. The critical Marangoni number for the nanofluid is lower than that of the pure fluid, which indicates that the addition of nanoparticles promotes the flow pattern transition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1