Guang-Ting Zheng, Po-Tsun Liu, Jo-Lin Chen, Cheng-Hao Li
{"title":"高可靠的a-Si:H栅极驱动器阵列具有互补的双面消噪和双电压电平,适用于TFT-LCD应用","authors":"Guang-Ting Zheng, Po-Tsun Liu, Jo-Lin Chen, Cheng-Hao Li","doi":"10.1002/jsid.1263","DOIUrl":null,"url":null,"abstract":"<p>In this work, we present a high-reliability gate driver on array (GOA) for a 10.7-in. HD (1,280 × RGB × 720) TFT-LCD panel, featuring an alternatively double-sided noise-eliminating function. The gate driver circuit is designed with 12-phase clock signals that exhibit 75% signal overlapping, threshold voltage recovering, and double-sided driving schemes. The double-sided driving scheme reduces the number of mental wires and TFTs in the gate driver circuit, resulting in a smaller layout area for GOA. By utilizing dual levels of voltage, we implemented a negative gate bias method to mitigate threshold voltage shifts for the noise-eliminating and driving TFTs. This prevents the noises from clock signals effectively. The reliability test of the proposed GOA with 720 stages passed a strict testing condition (90°C and −40°C) for simulation and exhibited good performance over 800 hours at 90°C for measurement.</p>","PeriodicalId":49979,"journal":{"name":"Journal of the Society for Information Display","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly reliable a-Si:H gate driver on array with complementary double-sided noise-eliminating and dual voltage levels for TFT-LCD applications\",\"authors\":\"Guang-Ting Zheng, Po-Tsun Liu, Jo-Lin Chen, Cheng-Hao Li\",\"doi\":\"10.1002/jsid.1263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we present a high-reliability gate driver on array (GOA) for a 10.7-in. HD (1,280 × RGB × 720) TFT-LCD panel, featuring an alternatively double-sided noise-eliminating function. The gate driver circuit is designed with 12-phase clock signals that exhibit 75% signal overlapping, threshold voltage recovering, and double-sided driving schemes. The double-sided driving scheme reduces the number of mental wires and TFTs in the gate driver circuit, resulting in a smaller layout area for GOA. By utilizing dual levels of voltage, we implemented a negative gate bias method to mitigate threshold voltage shifts for the noise-eliminating and driving TFTs. This prevents the noises from clock signals effectively. The reliability test of the proposed GOA with 720 stages passed a strict testing condition (90°C and −40°C) for simulation and exhibited good performance over 800 hours at 90°C for measurement.</p>\",\"PeriodicalId\":49979,\"journal\":{\"name\":\"Journal of the Society for Information Display\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Society for Information Display\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jsid.1263\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society for Information Display","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsid.1263","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Highly reliable a-Si:H gate driver on array with complementary double-sided noise-eliminating and dual voltage levels for TFT-LCD applications
In this work, we present a high-reliability gate driver on array (GOA) for a 10.7-in. HD (1,280 × RGB × 720) TFT-LCD panel, featuring an alternatively double-sided noise-eliminating function. The gate driver circuit is designed with 12-phase clock signals that exhibit 75% signal overlapping, threshold voltage recovering, and double-sided driving schemes. The double-sided driving scheme reduces the number of mental wires and TFTs in the gate driver circuit, resulting in a smaller layout area for GOA. By utilizing dual levels of voltage, we implemented a negative gate bias method to mitigate threshold voltage shifts for the noise-eliminating and driving TFTs. This prevents the noises from clock signals effectively. The reliability test of the proposed GOA with 720 stages passed a strict testing condition (90°C and −40°C) for simulation and exhibited good performance over 800 hours at 90°C for measurement.
期刊介绍:
The Journal of the Society for Information Display publishes original works dealing with the theory and practice of information display. Coverage includes materials, devices and systems; the underlying chemistry, physics, physiology and psychology; measurement techniques, manufacturing technologies; and all aspects of the interaction between equipment and its users. Review articles are also published in all of these areas. Occasional special issues or sections consist of collections of papers on specific topical areas or collections of full length papers based in part on oral or poster presentations given at SID sponsored conferences.