热采阶段EGS裂缝在热应力/裂缝作用下渗透率演化及损伤机制研究

IF 2.9 2区 地球科学 Q3 ENERGY & FUELS Geothermal Energy Pub Date : 2023-11-08 DOI:10.1186/s40517-023-00274-2
Wei Zhang, Dong Wang, Zenglin Wang, Tiankui Guo, Chunguang Wang, Jiayuan He, Le Zhang, Peng Zheng, Zhanqing Qu
{"title":"热采阶段EGS裂缝在热应力/裂缝作用下渗透率演化及损伤机制研究","authors":"Wei Zhang,&nbsp;Dong Wang,&nbsp;Zenglin Wang,&nbsp;Tiankui Guo,&nbsp;Chunguang Wang,&nbsp;Jiayuan He,&nbsp;Le Zhang,&nbsp;Peng Zheng,&nbsp;Zhanqing Qu","doi":"10.1186/s40517-023-00274-2","DOIUrl":null,"url":null,"abstract":"<div><p>As main heat exchange channel in enhanced geothermal system, the evolution of hydraulic conductivity in fracture is significance for efficient heat mining. For the thermal stress or thermal cracking spontaneously induced by the temperature difference between low-temperature fluid and hot rock in heat mining stage, it is necessary to explore the damage mechanism along EGS fracture and the corresponding permeability evolution. Firstly, the long-term permeability tests under high temperature (50–200 ℃) were conducted by the self-developed high temperature seepage experimental device. Then, a coupled THM-D model was constructed to describe the damage distribution along fracture. Combined with experimental and simulation results, relationship between the thermal stress/cracking and the evolution of fracture permeability is revealed. The results indicate that during high-temperature (200 ℃) experiments, the fracture permeability first increases rapidly under the low-temperature induced thermal stress/cracking, then decreases due to the blockage effect induced by the debris particles generated in thermal cracking along fracture. The enhancement of injection velocity and heterogeneity are all conducive to the emergence of thermal cracking in matrix along fracture. Simultaneously, high confining pressure has a negative effect on the migration of debris particles of thermal cracking, which contribute to prevent the blockage of debris particles.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00274-2","citationCount":"0","resultStr":"{\"title\":\"Study on permeability evolution and damage mechanism along the EGS fracture in heat mining stage under thermal stress/cracking\",\"authors\":\"Wei Zhang,&nbsp;Dong Wang,&nbsp;Zenglin Wang,&nbsp;Tiankui Guo,&nbsp;Chunguang Wang,&nbsp;Jiayuan He,&nbsp;Le Zhang,&nbsp;Peng Zheng,&nbsp;Zhanqing Qu\",\"doi\":\"10.1186/s40517-023-00274-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As main heat exchange channel in enhanced geothermal system, the evolution of hydraulic conductivity in fracture is significance for efficient heat mining. For the thermal stress or thermal cracking spontaneously induced by the temperature difference between low-temperature fluid and hot rock in heat mining stage, it is necessary to explore the damage mechanism along EGS fracture and the corresponding permeability evolution. Firstly, the long-term permeability tests under high temperature (50–200 ℃) were conducted by the self-developed high temperature seepage experimental device. Then, a coupled THM-D model was constructed to describe the damage distribution along fracture. Combined with experimental and simulation results, relationship between the thermal stress/cracking and the evolution of fracture permeability is revealed. The results indicate that during high-temperature (200 ℃) experiments, the fracture permeability first increases rapidly under the low-temperature induced thermal stress/cracking, then decreases due to the blockage effect induced by the debris particles generated in thermal cracking along fracture. The enhancement of injection velocity and heterogeneity are all conducive to the emergence of thermal cracking in matrix along fracture. Simultaneously, high confining pressure has a negative effect on the migration of debris particles of thermal cracking, which contribute to prevent the blockage of debris particles.</p></div>\",\"PeriodicalId\":48643,\"journal\":{\"name\":\"Geothermal Energy\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00274-2\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermal Energy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40517-023-00274-2\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-023-00274-2","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

裂缝导流性作为增强型地热系统的主要换热通道,其演化对高效采热具有重要意义。对于热采阶段低温流体与热岩温差自发诱发的热应力或热裂缝,有必要探索沿EGS裂缝的损伤机制及其渗透率演化规律。首先,利用自行研制的高温渗流试验装置进行了50 ~ 200℃高温下的长期渗透试验。然后,建立了一个耦合THM-D模型来描述沿裂缝的损伤分布。结合实验和模拟结果,揭示了热应力/开裂与裂缝渗透率演化的关系。结果表明:在高温(200℃)试验过程中,在低温诱导热应力/裂纹作用下,裂缝渗透率先快速增加,然后由于沿裂缝热裂纹产生的碎屑颗粒的堵塞作用而降低;注入速度的提高和非均质性的提高都有利于基体沿断口产生热裂纹。同时,高围压对热裂碎屑颗粒的迁移有不利影响,有助于防止碎屑颗粒堵塞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on permeability evolution and damage mechanism along the EGS fracture in heat mining stage under thermal stress/cracking

As main heat exchange channel in enhanced geothermal system, the evolution of hydraulic conductivity in fracture is significance for efficient heat mining. For the thermal stress or thermal cracking spontaneously induced by the temperature difference between low-temperature fluid and hot rock in heat mining stage, it is necessary to explore the damage mechanism along EGS fracture and the corresponding permeability evolution. Firstly, the long-term permeability tests under high temperature (50–200 ℃) were conducted by the self-developed high temperature seepage experimental device. Then, a coupled THM-D model was constructed to describe the damage distribution along fracture. Combined with experimental and simulation results, relationship between the thermal stress/cracking and the evolution of fracture permeability is revealed. The results indicate that during high-temperature (200 ℃) experiments, the fracture permeability first increases rapidly under the low-temperature induced thermal stress/cracking, then decreases due to the blockage effect induced by the debris particles generated in thermal cracking along fracture. The enhancement of injection velocity and heterogeneity are all conducive to the emergence of thermal cracking in matrix along fracture. Simultaneously, high confining pressure has a negative effect on the migration of debris particles of thermal cracking, which contribute to prevent the blockage of debris particles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
期刊最新文献
Pressure propagation during hydraulic stimulation: case study of the 2000 stimulation at Soultz-sous-Forêts Controlling injection conditions of a deep coaxial closed well heat exchanger to meet irregular heat demands: a field case study in Belgium (Mol) A probabilistic model-based approach to assess and minimize scaling in geothermal plants Leveraging machine learning for enhanced reservoir permeability estimation in geothermal hotspots: a case study of the Williston Basin Integrative analysis of the Aachen geothermal system (Germany) with an interdisciplinary conceptual model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1