{"title":"热采阶段EGS裂缝在热应力/裂缝作用下渗透率演化及损伤机制研究","authors":"Wei Zhang, Dong Wang, Zenglin Wang, Tiankui Guo, Chunguang Wang, Jiayuan He, Le Zhang, Peng Zheng, Zhanqing Qu","doi":"10.1186/s40517-023-00274-2","DOIUrl":null,"url":null,"abstract":"<div><p>As main heat exchange channel in enhanced geothermal system, the evolution of hydraulic conductivity in fracture is significance for efficient heat mining. For the thermal stress or thermal cracking spontaneously induced by the temperature difference between low-temperature fluid and hot rock in heat mining stage, it is necessary to explore the damage mechanism along EGS fracture and the corresponding permeability evolution. Firstly, the long-term permeability tests under high temperature (50–200 ℃) were conducted by the self-developed high temperature seepage experimental device. Then, a coupled THM-D model was constructed to describe the damage distribution along fracture. Combined with experimental and simulation results, relationship between the thermal stress/cracking and the evolution of fracture permeability is revealed. The results indicate that during high-temperature (200 ℃) experiments, the fracture permeability first increases rapidly under the low-temperature induced thermal stress/cracking, then decreases due to the blockage effect induced by the debris particles generated in thermal cracking along fracture. The enhancement of injection velocity and heterogeneity are all conducive to the emergence of thermal cracking in matrix along fracture. Simultaneously, high confining pressure has a negative effect on the migration of debris particles of thermal cracking, which contribute to prevent the blockage of debris particles.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00274-2","citationCount":"0","resultStr":"{\"title\":\"Study on permeability evolution and damage mechanism along the EGS fracture in heat mining stage under thermal stress/cracking\",\"authors\":\"Wei Zhang, Dong Wang, Zenglin Wang, Tiankui Guo, Chunguang Wang, Jiayuan He, Le Zhang, Peng Zheng, Zhanqing Qu\",\"doi\":\"10.1186/s40517-023-00274-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As main heat exchange channel in enhanced geothermal system, the evolution of hydraulic conductivity in fracture is significance for efficient heat mining. For the thermal stress or thermal cracking spontaneously induced by the temperature difference between low-temperature fluid and hot rock in heat mining stage, it is necessary to explore the damage mechanism along EGS fracture and the corresponding permeability evolution. Firstly, the long-term permeability tests under high temperature (50–200 ℃) were conducted by the self-developed high temperature seepage experimental device. Then, a coupled THM-D model was constructed to describe the damage distribution along fracture. Combined with experimental and simulation results, relationship between the thermal stress/cracking and the evolution of fracture permeability is revealed. The results indicate that during high-temperature (200 ℃) experiments, the fracture permeability first increases rapidly under the low-temperature induced thermal stress/cracking, then decreases due to the blockage effect induced by the debris particles generated in thermal cracking along fracture. The enhancement of injection velocity and heterogeneity are all conducive to the emergence of thermal cracking in matrix along fracture. Simultaneously, high confining pressure has a negative effect on the migration of debris particles of thermal cracking, which contribute to prevent the blockage of debris particles.</p></div>\",\"PeriodicalId\":48643,\"journal\":{\"name\":\"Geothermal Energy\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00274-2\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermal Energy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40517-023-00274-2\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-023-00274-2","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Study on permeability evolution and damage mechanism along the EGS fracture in heat mining stage under thermal stress/cracking
As main heat exchange channel in enhanced geothermal system, the evolution of hydraulic conductivity in fracture is significance for efficient heat mining. For the thermal stress or thermal cracking spontaneously induced by the temperature difference between low-temperature fluid and hot rock in heat mining stage, it is necessary to explore the damage mechanism along EGS fracture and the corresponding permeability evolution. Firstly, the long-term permeability tests under high temperature (50–200 ℃) were conducted by the self-developed high temperature seepage experimental device. Then, a coupled THM-D model was constructed to describe the damage distribution along fracture. Combined with experimental and simulation results, relationship between the thermal stress/cracking and the evolution of fracture permeability is revealed. The results indicate that during high-temperature (200 ℃) experiments, the fracture permeability first increases rapidly under the low-temperature induced thermal stress/cracking, then decreases due to the blockage effect induced by the debris particles generated in thermal cracking along fracture. The enhancement of injection velocity and heterogeneity are all conducive to the emergence of thermal cracking in matrix along fracture. Simultaneously, high confining pressure has a negative effect on the migration of debris particles of thermal cracking, which contribute to prevent the blockage of debris particles.
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.