Hang Duong Thi, Kha Hoang Manh, Vu Trinh Anh, Trang Pham Thi Quynh, Tuyen Nguyen Viet
{"title":"基于截断奇异值分解和k近邻回归的室内定位降维方法","authors":"Hang Duong Thi, Kha Hoang Manh, Vu Trinh Anh, Trang Pham Thi Quynh, Tuyen Nguyen Viet","doi":"10.14569/ijacsa.2023.0141034","DOIUrl":null,"url":null,"abstract":"—Indoor localization presents formidable challenges across diverse sectors, encompassing indoor navigation and asset tracking. In this study, we introduce an inventive indoor localization methodology that combines Truncated Singular Value Decomposition (Truncated SVD) for dimensionality reduction with the K-Nearest Neighbors Regressor (KNN Regression) for precise position prediction. The central objective of this proposed technique is to mitigate the complexity of high-dimensional input data while preserving critical information essential for achieving accurate localization outcomes. To validate the effectiveness of our approach, we conducted an extensive empirical evaluation employing a publicly accessible dataset. This dataset covers a wide spectrum of indoor environments, facilitating a comprehensive assessment. The performance evaluation metrics adopted encompass the Root Mean Squared Error (RMSE) and the Euclidean distance error (EDE)—widely embraced in the field of localization. Importantly, the simulated results demonstrated promising performance, yielding an RMSE of 1.96 meters and an average EDE of 2.23 meters. These results surpass the achievements of prevailing state-of-the-art techniques, which typically attain localization accuracies ranging from 2.5 meters to 2.7 meters using the same dataset. The enhanced accuracy in localization can be attributed to the synergy between Truncated SVD's dimensionality reduction and the proficiency of KNN Regression in capturing intricate spatial relationships among data points. Our proposed approach highlights its potential to deliver heightened precision in indoor localization outcomes, with immediate relevance to real-time scenarios. Future research endeavors involving comprehensive comparative analyses with advanced techniques hold promise in propelling the field of accurate indoor localization solutions forward.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"52 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimensionality Reduction with Truncated Singular Value Decomposition and K-Nearest Neighbors Regression for Indoor Localization\",\"authors\":\"Hang Duong Thi, Kha Hoang Manh, Vu Trinh Anh, Trang Pham Thi Quynh, Tuyen Nguyen Viet\",\"doi\":\"10.14569/ijacsa.2023.0141034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Indoor localization presents formidable challenges across diverse sectors, encompassing indoor navigation and asset tracking. In this study, we introduce an inventive indoor localization methodology that combines Truncated Singular Value Decomposition (Truncated SVD) for dimensionality reduction with the K-Nearest Neighbors Regressor (KNN Regression) for precise position prediction. The central objective of this proposed technique is to mitigate the complexity of high-dimensional input data while preserving critical information essential for achieving accurate localization outcomes. To validate the effectiveness of our approach, we conducted an extensive empirical evaluation employing a publicly accessible dataset. This dataset covers a wide spectrum of indoor environments, facilitating a comprehensive assessment. The performance evaluation metrics adopted encompass the Root Mean Squared Error (RMSE) and the Euclidean distance error (EDE)—widely embraced in the field of localization. Importantly, the simulated results demonstrated promising performance, yielding an RMSE of 1.96 meters and an average EDE of 2.23 meters. These results surpass the achievements of prevailing state-of-the-art techniques, which typically attain localization accuracies ranging from 2.5 meters to 2.7 meters using the same dataset. The enhanced accuracy in localization can be attributed to the synergy between Truncated SVD's dimensionality reduction and the proficiency of KNN Regression in capturing intricate spatial relationships among data points. Our proposed approach highlights its potential to deliver heightened precision in indoor localization outcomes, with immediate relevance to real-time scenarios. Future research endeavors involving comprehensive comparative analyses with advanced techniques hold promise in propelling the field of accurate indoor localization solutions forward.\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.0141034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0141034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Dimensionality Reduction with Truncated Singular Value Decomposition and K-Nearest Neighbors Regression for Indoor Localization
—Indoor localization presents formidable challenges across diverse sectors, encompassing indoor navigation and asset tracking. In this study, we introduce an inventive indoor localization methodology that combines Truncated Singular Value Decomposition (Truncated SVD) for dimensionality reduction with the K-Nearest Neighbors Regressor (KNN Regression) for precise position prediction. The central objective of this proposed technique is to mitigate the complexity of high-dimensional input data while preserving critical information essential for achieving accurate localization outcomes. To validate the effectiveness of our approach, we conducted an extensive empirical evaluation employing a publicly accessible dataset. This dataset covers a wide spectrum of indoor environments, facilitating a comprehensive assessment. The performance evaluation metrics adopted encompass the Root Mean Squared Error (RMSE) and the Euclidean distance error (EDE)—widely embraced in the field of localization. Importantly, the simulated results demonstrated promising performance, yielding an RMSE of 1.96 meters and an average EDE of 2.23 meters. These results surpass the achievements of prevailing state-of-the-art techniques, which typically attain localization accuracies ranging from 2.5 meters to 2.7 meters using the same dataset. The enhanced accuracy in localization can be attributed to the synergy between Truncated SVD's dimensionality reduction and the proficiency of KNN Regression in capturing intricate spatial relationships among data points. Our proposed approach highlights its potential to deliver heightened precision in indoor localization outcomes, with immediate relevance to real-time scenarios. Future research endeavors involving comprehensive comparative analyses with advanced techniques hold promise in propelling the field of accurate indoor localization solutions forward.
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications