CuO-MgO-ZnO和CuO-Co3O4-CeO2的合成与表征

Leonardo Francisco Gonçalves Dias, Gabriel Junior Cavalcante Pimentel, João Pedro Costa Rheinheimer, Orisson Ponce Gomes, Bianca Gottardo de Almeida, Diogo Paschoalini Volanti, Margarete Teresa Gottardo de Almeida, Paulo Noronha Lisboa-Filho
{"title":"CuO-MgO-ZnO和CuO-Co3O4-CeO2的合成与表征","authors":"Leonardo Francisco Gonçalves Dias, Gabriel Junior Cavalcante Pimentel, João Pedro Costa Rheinheimer, Orisson Ponce Gomes, Bianca Gottardo de Almeida, Diogo Paschoalini Volanti, Margarete Teresa Gottardo de Almeida, Paulo Noronha Lisboa-Filho","doi":"10.1007/s43939-023-00064-4","DOIUrl":null,"url":null,"abstract":"Abstract The synthesis of trioxides offers unique properties for different applications due to the combination of multiple oxides; however, few studies have reported on the properties of these materials, especially in terms of their ability to create reactive oxygen species, which are helpful for antibacterial and antifungal activity. This study aimed to evaluate the surface properties of CuO-MgO-ZnO and CuO-Co 3 O 4 -CeO 2 trioxides synthesized via precipitation assisted by an ultrasonic bath or sonication. The structural analysis indicated the formation of micrometric particles consisting of individual phases of each oxide, with no apparent influence of the preparation method on their morphology. UV–Vis spectroscopy revealed that CuO-MgO-ZnO particles have a band gap near 5.5 eV, while CuO-Co 3 O 4 -CeO 2 has a single value at 4.2 eV. Zeta potential measurements indicated changes in the materials' outermost layer composition due to the synthesis method. Additionally, biological assays showed that the materials could completely inhibit the growth of Candida species and Staphylococcus aureus but not Klebsiella pneumoniae . These results suggest that the materials may be suitable for self-cleaning surfaces and medical device coatings.","PeriodicalId":34625,"journal":{"name":"Discover Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of CuO-MgO-ZnO and CuO-Co3O4-CeO2\",\"authors\":\"Leonardo Francisco Gonçalves Dias, Gabriel Junior Cavalcante Pimentel, João Pedro Costa Rheinheimer, Orisson Ponce Gomes, Bianca Gottardo de Almeida, Diogo Paschoalini Volanti, Margarete Teresa Gottardo de Almeida, Paulo Noronha Lisboa-Filho\",\"doi\":\"10.1007/s43939-023-00064-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The synthesis of trioxides offers unique properties for different applications due to the combination of multiple oxides; however, few studies have reported on the properties of these materials, especially in terms of their ability to create reactive oxygen species, which are helpful for antibacterial and antifungal activity. This study aimed to evaluate the surface properties of CuO-MgO-ZnO and CuO-Co 3 O 4 -CeO 2 trioxides synthesized via precipitation assisted by an ultrasonic bath or sonication. The structural analysis indicated the formation of micrometric particles consisting of individual phases of each oxide, with no apparent influence of the preparation method on their morphology. UV–Vis spectroscopy revealed that CuO-MgO-ZnO particles have a band gap near 5.5 eV, while CuO-Co 3 O 4 -CeO 2 has a single value at 4.2 eV. Zeta potential measurements indicated changes in the materials' outermost layer composition due to the synthesis method. Additionally, biological assays showed that the materials could completely inhibit the growth of Candida species and Staphylococcus aureus but not Klebsiella pneumoniae . These results suggest that the materials may be suitable for self-cleaning surfaces and medical device coatings.\",\"PeriodicalId\":34625,\"journal\":{\"name\":\"Discover Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s43939-023-00064-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43939-023-00064-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:由于多种氧化物的结合,三氧化物的合成为不同的应用提供了独特的性能;然而,很少有研究报道这些材料的性质,特别是在它们产生活性氧的能力方面,这有助于抗菌和抗真菌活性。本研究旨在评价超声浴辅助沉淀法合成的CuO-MgO-ZnO和cuo - co3o4 - ceo2三氧化物的表面性能。结构分析表明,制备方法对其形貌无明显影响,形成了由各氧化物相组成的微米级颗粒。紫外可见光谱显示,CuO-MgO-ZnO粒子在5.5 eV附近有一个带隙,而cuo - co3o4 - ceo2在4.2 eV处有一个单一带隙。Zeta电位测量表明,由于合成方法的不同,材料的最外层成分发生了变化。此外,生物实验表明,该材料可以完全抑制念珠菌和金黄色葡萄球菌的生长,但不能抑制肺炎克雷伯菌的生长。这些结果表明,该材料可能适用于自清洁表面和医疗器械涂层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and characterization of CuO-MgO-ZnO and CuO-Co3O4-CeO2
Abstract The synthesis of trioxides offers unique properties for different applications due to the combination of multiple oxides; however, few studies have reported on the properties of these materials, especially in terms of their ability to create reactive oxygen species, which are helpful for antibacterial and antifungal activity. This study aimed to evaluate the surface properties of CuO-MgO-ZnO and CuO-Co 3 O 4 -CeO 2 trioxides synthesized via precipitation assisted by an ultrasonic bath or sonication. The structural analysis indicated the formation of micrometric particles consisting of individual phases of each oxide, with no apparent influence of the preparation method on their morphology. UV–Vis spectroscopy revealed that CuO-MgO-ZnO particles have a band gap near 5.5 eV, while CuO-Co 3 O 4 -CeO 2 has a single value at 4.2 eV. Zeta potential measurements indicated changes in the materials' outermost layer composition due to the synthesis method. Additionally, biological assays showed that the materials could completely inhibit the growth of Candida species and Staphylococcus aureus but not Klebsiella pneumoniae . These results suggest that the materials may be suitable for self-cleaning surfaces and medical device coatings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discover Materials
Discover Materials materials-
CiteScore
3.30
自引率
0.00%
发文量
10
审稿时长
23 days
期刊介绍: Discover Materials is part of the Discover journal series committed to providing a streamlined submission process, rapid review and publication, and a high level of author service at every stage. It is a broad, open access journal publishing research from across all fields of materials research. Discover Materials covers all areas where materials are activators for innovation and disruption, providing cutting-edge research findings to researchers, academicians, students, and engineers. It considers the whole value chain, ranging from fundamental and applied research to the synthesis, characterisation, modelling and application of materials. Moreover, we especially welcome papers connected to so-called ‘green materials’, which offer unique properties including natural abundance, low toxicity, economically affordable and versatility in terms of physical and chemical properties. They are the activators of an eco-sustainable economy serving all innovation sectors. Indeed, they can be applied in numerous scientific and technological applications including energy, electronics, building, construction and infrastructure, materials science and engineering applications and pollution management and technology. For instance, biomass-based materials can be developed as a source for biodiesel and bioethanol production, and transformed into advanced functionalized materials for applications such as the transformation of chitin into chitosan which can be further used for biomedicine, biomaterials and tissue engineering applications. Green materials for electronics are also a key vector concerning the integration of novel devices on conformable, flexible substrates with free-of-form surfaces for innovative product development. We also welcome new developments grounded on Artificial Intelligence to model, design and simulate materials and to gain new insights into materials by discovering new patterns and relations in the data.
期刊最新文献
Microstructural analysis and densification of ordinary Portland cement mortars incorporated with minimal nano-TiO2: intermixing and surface coating on both fresh and hardened surfaces Product classes characterization at micro-scale level applied to granular wastes fractions < 20 mm: a case-study Pressureless sintering kinetics analysis of Ti3SiC2 and Ti2AlC powdered MAX phases Understanding the explosion risk presented by ammonium nitrate and aluminium home-made explosives detonated as surface charges in hexahedral main charge containers Per-acetic acid effect on separation of banana fiber and their dyeing with natural dyes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1