{"title":"基于多重注意机制和动态图卷积的三维点云分类方法","authors":"Yu Zhang, Zilong Wang, Yongjian Zhu","doi":"10.5755/j01.itc.52.3.33035","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of uneven density and the low classification accuracy of 3D point cloud, a 3D point cloud classification method fuses multi-attention machine is proposed. It is principally based on the traditional point cloud dynamic graph convolution classification network, into multiple attention mechanisms, including self-attention, spatial attention and channel attention mechanisms. The self-attention mechanism can reduce the dependence on irrelevant points while aligning point clouds, and input the processed point cloud into the classification network. Then the missing geometric information in the classification network is compensated by the integration of spatial and channel attention mechanisms. The experimental results on the public data set ModelNet40 indicate that compared with the DGCNN classification network, the improved network model improves the classification accuracy of the data set by 0.5 % and the average accuracy by 0.9 %. Meantime, the classification accuracy outstrips other contrast classification algorithms.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"42 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Point Cloud Classification Method Based on Multiple Attention Mechanism and Dynamic Graph Convolution\",\"authors\":\"Yu Zhang, Zilong Wang, Yongjian Zhu\",\"doi\":\"10.5755/j01.itc.52.3.33035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the problem of uneven density and the low classification accuracy of 3D point cloud, a 3D point cloud classification method fuses multi-attention machine is proposed. It is principally based on the traditional point cloud dynamic graph convolution classification network, into multiple attention mechanisms, including self-attention, spatial attention and channel attention mechanisms. The self-attention mechanism can reduce the dependence on irrelevant points while aligning point clouds, and input the processed point cloud into the classification network. Then the missing geometric information in the classification network is compensated by the integration of spatial and channel attention mechanisms. The experimental results on the public data set ModelNet40 indicate that compared with the DGCNN classification network, the improved network model improves the classification accuracy of the data set by 0.5 % and the average accuracy by 0.9 %. Meantime, the classification accuracy outstrips other contrast classification algorithms.\",\"PeriodicalId\":54982,\"journal\":{\"name\":\"Information Technology and Control\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.itc.52.3.33035\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j01.itc.52.3.33035","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
3D Point Cloud Classification Method Based on Multiple Attention Mechanism and Dynamic Graph Convolution
In order to solve the problem of uneven density and the low classification accuracy of 3D point cloud, a 3D point cloud classification method fuses multi-attention machine is proposed. It is principally based on the traditional point cloud dynamic graph convolution classification network, into multiple attention mechanisms, including self-attention, spatial attention and channel attention mechanisms. The self-attention mechanism can reduce the dependence on irrelevant points while aligning point clouds, and input the processed point cloud into the classification network. Then the missing geometric information in the classification network is compensated by the integration of spatial and channel attention mechanisms. The experimental results on the public data set ModelNet40 indicate that compared with the DGCNN classification network, the improved network model improves the classification accuracy of the data set by 0.5 % and the average accuracy by 0.9 %. Meantime, the classification accuracy outstrips other contrast classification algorithms.
期刊介绍:
Periodical journal covers a wide field of computer science and control systems related problems including:
-Software and hardware engineering;
-Management systems engineering;
-Information systems and databases;
-Embedded systems;
-Physical systems modelling and application;
-Computer networks and cloud computing;
-Data visualization;
-Human-computer interface;
-Computer graphics, visual analytics, and multimedia systems.