高超声速飞行器等离子体鞘层电磁散射的非对称混合高阶不连续伽辽金时域方法

IF 1.2 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Antennas and Propagation Pub Date : 2023-09-26 DOI:10.1155/2023/6223384
Jirong Guo, Yiping Han
{"title":"高超声速飞行器等离子体鞘层电磁散射的非对称混合高阶不连续伽辽金时域方法","authors":"Jirong Guo, Yiping Han","doi":"10.1155/2023/6223384","DOIUrl":null,"url":null,"abstract":"The plasma sheath during reentry of hypersonic vehicle is an unmagnetized and weakly ionized nonuniform plasma flow, which causes radio frequency blackout and strong plasma attenuation of electromagnetic wave. The physical properties of the nonuniform plasma flow were obtained using computational fluid dynamics software with unstructured grids. In this study, a detailed computational model was reconstructed with the high-order Lagrange grids for the nonuniform plasma flow region and the high-order Serendipity grids for the homogeneous medium region. In order to calculate the numerical flux between the two types of grids in the discontinuous Galerkin time domain (DGTD) algorithm, an asymmetric high-order element is constructed as a transition unit. Finally, the simulation results in the plasma sphere show that the above method improves the computational accuracy and decreases calculation. The amplitude and scattering about electromagnetic wave in nonuniform plasma flow are clarified in detail. It is suggested that the presented method could be an effective tool for investigating interaction between electromagnetic waves and plasma flow.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":"18 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Asymmetrical Mixed Higher-Order Discontinuous Galerkin Time Domain Method for Electromagnetic Scattering from the Plasma Sheath around a Hypersonic Vehicle\",\"authors\":\"Jirong Guo, Yiping Han\",\"doi\":\"10.1155/2023/6223384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The plasma sheath during reentry of hypersonic vehicle is an unmagnetized and weakly ionized nonuniform plasma flow, which causes radio frequency blackout and strong plasma attenuation of electromagnetic wave. The physical properties of the nonuniform plasma flow were obtained using computational fluid dynamics software with unstructured grids. In this study, a detailed computational model was reconstructed with the high-order Lagrange grids for the nonuniform plasma flow region and the high-order Serendipity grids for the homogeneous medium region. In order to calculate the numerical flux between the two types of grids in the discontinuous Galerkin time domain (DGTD) algorithm, an asymmetric high-order element is constructed as a transition unit. Finally, the simulation results in the plasma sphere show that the above method improves the computational accuracy and decreases calculation. The amplitude and scattering about electromagnetic wave in nonuniform plasma flow are clarified in detail. It is suggested that the presented method could be an effective tool for investigating interaction between electromagnetic waves and plasma flow.\",\"PeriodicalId\":54392,\"journal\":{\"name\":\"International Journal of Antennas and Propagation\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Antennas and Propagation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6223384\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6223384","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

高超声速飞行器再入过程中的等离子体鞘层是一种非磁化弱电离的非均匀等离子体流,导致射频中断和电磁波的强等离子体衰减。利用非结构网格计算流体动力学软件,得到了非均匀等离子体流动的物理性质。本文采用高阶拉格朗日网格和高阶Serendipity网格分别对非均匀等离子体流区和均匀介质区进行了详细的计算模型重建。为了在不连续伽辽金时域(DGTD)算法中计算两种网格之间的数值通量,构造了一个非对称高阶单元作为过渡单元。最后,在等离子体球中的仿真结果表明,该方法提高了计算精度,减少了计算量。详细地阐明了电磁波在非均匀等离子体流中的振幅和散射。该方法可作为研究电磁波与等离子体流相互作用的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Asymmetrical Mixed Higher-Order Discontinuous Galerkin Time Domain Method for Electromagnetic Scattering from the Plasma Sheath around a Hypersonic Vehicle
The plasma sheath during reentry of hypersonic vehicle is an unmagnetized and weakly ionized nonuniform plasma flow, which causes radio frequency blackout and strong plasma attenuation of electromagnetic wave. The physical properties of the nonuniform plasma flow were obtained using computational fluid dynamics software with unstructured grids. In this study, a detailed computational model was reconstructed with the high-order Lagrange grids for the nonuniform plasma flow region and the high-order Serendipity grids for the homogeneous medium region. In order to calculate the numerical flux between the two types of grids in the discontinuous Galerkin time domain (DGTD) algorithm, an asymmetric high-order element is constructed as a transition unit. Finally, the simulation results in the plasma sphere show that the above method improves the computational accuracy and decreases calculation. The amplitude and scattering about electromagnetic wave in nonuniform plasma flow are clarified in detail. It is suggested that the presented method could be an effective tool for investigating interaction between electromagnetic waves and plasma flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Antennas and Propagation
International Journal of Antennas and Propagation ENGINEERING, ELECTRICAL & ELECTRONIC-TELECOMMUNICATIONS
CiteScore
3.10
自引率
13.30%
发文量
158
审稿时长
3.8 months
期刊介绍: International Journal of Antennas and Propagation publishes papers on the design, analysis, and applications of antennas, along with theoretical and practical studies relating the propagation of electromagnetic waves at all relevant frequencies, through space, air, and other media. As well as original research, the International Journal of Antennas and Propagation also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
Measurement of High-Power Microwave Impulse Response Characteristics of Reflector Materials A Simultaneous Study on Wire-Loop, Plate-Loop, and Plate Antennas for Wideband Circular Polarization Extracting Pole Characteristics of Complex Radar Targets for the Aircraft in Resonance Region Using RMSPSO_ARMA Safety Assessment of Electromagnetic Environmental Exposure for GPS Antenna of Electric Vehicle Design of the Monopulse Feeding Network for a Slotted Waveguide Array on an Annular Disk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1