基于ble的接触跟踪:距离估计误差的表征和缓解方案

IF 1.6 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Pervasive Computing Pub Date : 2023-01-01 DOI:10.1109/mprv.2023.3323747
Barbara Nußbaummüller, Bernhard Etzlinger, Karin Anna Hummel
{"title":"基于ble的接触跟踪:距离估计误差的表征和缓解方案","authors":"Barbara Nußbaummüller, Bernhard Etzlinger, Karin Anna Hummel","doi":"10.1109/mprv.2023.3323747","DOIUrl":null,"url":null,"abstract":"Contact tracing is an accepted means to keep track of human infection chains during epidemics. Contact tracing smartphone apps such as deployed during the recent COVID-19 pandemic are widely based on distance estimation by privacy-preserving use of Bluetooth Low Energy (BLE). Yet, the BLE received signal strength indicator used for distance estimation is too weakly correlated with the distance in real scenarios. Major impacting factors are varying body shielding and signal propagation characteristics of the environment. We present a method that adjusts the common BLE pathloss model with a context factor, which can be experimentally derived based on phone carry position and environment detection. Experiments with a smartphone testbed show that the distance estimation error can be reduced to about 1 m for four major carry positions in short-distance indoor and outdoor settings. This result is an encouraging first step towards reliable privacy-preserving contact tracing.","PeriodicalId":55021,"journal":{"name":"IEEE Pervasive Computing","volume":"6 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BLE-Based Contact Tracing: Characterization of Distance Estimation Errors and Mitigation Options\",\"authors\":\"Barbara Nußbaummüller, Bernhard Etzlinger, Karin Anna Hummel\",\"doi\":\"10.1109/mprv.2023.3323747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contact tracing is an accepted means to keep track of human infection chains during epidemics. Contact tracing smartphone apps such as deployed during the recent COVID-19 pandemic are widely based on distance estimation by privacy-preserving use of Bluetooth Low Energy (BLE). Yet, the BLE received signal strength indicator used for distance estimation is too weakly correlated with the distance in real scenarios. Major impacting factors are varying body shielding and signal propagation characteristics of the environment. We present a method that adjusts the common BLE pathloss model with a context factor, which can be experimentally derived based on phone carry position and environment detection. Experiments with a smartphone testbed show that the distance estimation error can be reduced to about 1 m for four major carry positions in short-distance indoor and outdoor settings. This result is an encouraging first step towards reliable privacy-preserving contact tracing.\",\"PeriodicalId\":55021,\"journal\":{\"name\":\"IEEE Pervasive Computing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Pervasive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mprv.2023.3323747\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Pervasive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mprv.2023.3323747","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

接触者追踪是流行病期间跟踪人类感染链的一种公认手段。最近在COVID-19大流行期间部署的接触者追踪智能手机应用程序广泛基于使用低功耗蓝牙(BLE)保护隐私的距离估计。然而,用于距离估计的BLE接收信号强度指标与实际场景中的距离相关性过弱。主要的影响因素是不同的身体屏蔽和信号传播特性的环境。我们提出了一种基于手机携带位置和环境检测的实验推导出的基于环境因素的普通BLE路径损耗模型调整方法。在智能手机测试平台上进行的实验表明,在短距离室内和室外设置的四个主要携带位置,距离估计误差可以降低到1 m左右。这一结果是朝着可靠的隐私保护接触追踪迈出的令人鼓舞的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BLE-Based Contact Tracing: Characterization of Distance Estimation Errors and Mitigation Options
Contact tracing is an accepted means to keep track of human infection chains during epidemics. Contact tracing smartphone apps such as deployed during the recent COVID-19 pandemic are widely based on distance estimation by privacy-preserving use of Bluetooth Low Energy (BLE). Yet, the BLE received signal strength indicator used for distance estimation is too weakly correlated with the distance in real scenarios. Major impacting factors are varying body shielding and signal propagation characteristics of the environment. We present a method that adjusts the common BLE pathloss model with a context factor, which can be experimentally derived based on phone carry position and environment detection. Experiments with a smartphone testbed show that the distance estimation error can be reduced to about 1 m for four major carry positions in short-distance indoor and outdoor settings. This result is an encouraging first step towards reliable privacy-preserving contact tracing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Pervasive Computing
IEEE Pervasive Computing 工程技术-电信学
CiteScore
4.10
自引率
0.00%
发文量
47
审稿时长
>12 weeks
期刊介绍: IEEE Pervasive Computing explores the role of computing in the physical world–as characterized by visions such as the Internet of Things and Ubiquitous Computing. Designed for researchers, practitioners, and educators, this publication acts as a catalyst for realizing the ideas described by Mark Weiser in 1988. The essence of this vision is the creation of environments saturated with sensing, computing, and wireless communication that gracefully support the needs of individuals and society. Many key building blocks for this vision are now viable commercial technologies: wearable and handheld computers, wireless networking, location sensing, Internet of Things platforms, and so on. However, the vision continues to present deep challenges for experts in areas such as hardware design, sensor networks, mobile systems, human-computer interaction, industrial design, machine learning, data science, and societal issues including privacy and ethics. Through special issues, the magazine explores applications in areas such as assisted living, automotive systems, cognitive assistance, hardware innovations, ICT4D, manufacturing, retail, smart cities, and sustainability. In addition, the magazine accepts peer-reviewed papers of wide interest under a general call, and also features regular columns on hot topics and interviews with luminaries in the field.
期刊最新文献
Low-Cost Sensing for Environmental Sustainability A Framework for Evaluating the Security and Privacy of Smart-Home Devices, and its Application to Common Platforms Co-Designing Accessible Computer and Smartphone Input Using Physical Computing The Future of Consumer Edge-AI Computing An App-Assisted Frontend of Robot Gait Training System for Lower Limb Rehabilitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1