结合空间信息在机器学习中探索行人伤害严重程度

Shaila Jamal, K. Bruce Newbold, Darren Scott
{"title":"结合空间信息在机器学习中探索行人伤害严重程度","authors":"Shaila Jamal, K. Bruce Newbold, Darren Scott","doi":"10.32866/001c.89416","DOIUrl":null,"url":null,"abstract":"Using the random forest classification technique, this study explored the role of different factors such as demography, pedestrian and drivers’ conditions, collision characteristics, road characteristics, and weather in predicting pedestrian injury severity from automobile-related collisions in Toronto. Spatial information was incorporated in the models to capture spatial autocorrelation. The results revealed the importance of spatial information in predicting pedestrian injury severity. Other important predictors of pedestrian injury severity include aggressive driving, driver’s conditions (e.g., inattentive, slowly stopping, driving properly, failing to yield right of way), pedestrian conditions (e.g., normal, inattentive) and dark lighting conditions.","PeriodicalId":73025,"journal":{"name":"Findings (Sydney (N.S.W.)","volume":"33 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Pedestrian Injury Severity by Incorporating Spatial Information in Machine Learning\",\"authors\":\"Shaila Jamal, K. Bruce Newbold, Darren Scott\",\"doi\":\"10.32866/001c.89416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the random forest classification technique, this study explored the role of different factors such as demography, pedestrian and drivers’ conditions, collision characteristics, road characteristics, and weather in predicting pedestrian injury severity from automobile-related collisions in Toronto. Spatial information was incorporated in the models to capture spatial autocorrelation. The results revealed the importance of spatial information in predicting pedestrian injury severity. Other important predictors of pedestrian injury severity include aggressive driving, driver’s conditions (e.g., inattentive, slowly stopping, driving properly, failing to yield right of way), pedestrian conditions (e.g., normal, inattentive) and dark lighting conditions.\",\"PeriodicalId\":73025,\"journal\":{\"name\":\"Findings (Sydney (N.S.W.)\",\"volume\":\"33 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Findings (Sydney (N.S.W.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32866/001c.89416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings (Sydney (N.S.W.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32866/001c.89416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用随机森林分类技术,探讨了人口统计学、行人和驾驶员状况、碰撞特征、道路特征和天气等不同因素在预测多伦多汽车相关碰撞行人伤害严重程度中的作用。在模型中加入空间信息,捕捉空间自相关性。研究结果揭示了空间信息在预测行人伤害严重程度中的重要性。行人受伤严重程度的其他重要预测因素包括攻击性驾驶、驾驶员状况(例如,注意力不集中、缓慢停车、正确驾驶、未能让出路权)、行人状况(例如,正常、注意力不集中)和黑暗照明状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring Pedestrian Injury Severity by Incorporating Spatial Information in Machine Learning
Using the random forest classification technique, this study explored the role of different factors such as demography, pedestrian and drivers’ conditions, collision characteristics, road characteristics, and weather in predicting pedestrian injury severity from automobile-related collisions in Toronto. Spatial information was incorporated in the models to capture spatial autocorrelation. The results revealed the importance of spatial information in predicting pedestrian injury severity. Other important predictors of pedestrian injury severity include aggressive driving, driver’s conditions (e.g., inattentive, slowly stopping, driving properly, failing to yield right of way), pedestrian conditions (e.g., normal, inattentive) and dark lighting conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Exploring Pedestrian Injury Severity by Incorporating Spatial Information in Machine Learning Darkness and Death in the U.S.: Walking Distances Across the Nation by Time of Day and Time of Year Activity Reduction as Resilience Indicator: Evidence with Filomena Data The Lifestyle and Mobility Connection of Community Supported Agriculture (CSA) Users Transit Fleet Electrification Barriers, Resolutions and Costs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1