基于细胞的铁下垂研究模型系统的建立

Bjarne Goebel, Laura Carpanedo, Susanne Reif, Tamara Göbel, Svenja Simonyi, Nils Helge Schebb, Dieter Steinhilber, Ann-Kathrin Häfner
{"title":"基于细胞的铁下垂研究模型系统的建立","authors":"Bjarne Goebel, Laura Carpanedo, Susanne Reif, Tamara Göbel, Svenja Simonyi, Nils Helge Schebb, Dieter Steinhilber, Ann-Kathrin Häfner","doi":"10.3389/fceld.2023.1182239","DOIUrl":null,"url":null,"abstract":"Since 2005, the original three cell death mechanisms apoptosis, autophagy and necrosis are accompanied by several new forms. The most recent member, ferroptosis, was first described in 2012 and is characterized by the accumulation of iron and increased lipid peroxidation. In this study, we present a model system to study ferroptotic states in stably transfected HEK293T cells, using acyl-CoA synthetase long chain family member 4 (ACSL4), a biomarker of ferroptosis, and/or lysophosphatidylcholine acyltransferase 2 (LPCAT2), a transferase responsible for the lipid remodeling process. In addition, we introduced an inducible expression system for 5-lipoxygenase (LO), 15-LO1 and 15-LO2, to trigger enzymatic lipid peroxidation. We characterized the system in terms of ACSL4, LPCAT2 and LO expression both on Western blot level and by laser scanning confocal microscopy as well as the intracellular localization of all enzymes. Furthermore, we verified inducibility and activity of our LOs and, in addition, analyzed non-esterified (free) and total amounts of oxylipins. When cells were incubated with the ferroptosis-inducing agents GPX4 inhibitor RSL3 or GSH reducing erastin, we observed a decrease in cell viability that was strongly enhanced in the presence of ACSL4 and LPCAT2. Interestingly, additional expression of LPCAT2 resulted in altered localization of 15-LO1, which shifted from the cytosol to the nuclear membrane. A similar localization occurred after treatment with RSL3. Therefore, on one hand, we propose that LPCAT2 is an acyltransferase that promotes ferroptotic conditions, and on the other hand, we introduce a new cell-based model system suitable for studying ferroptosis.","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"46 27","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a cell-based model system for the investigation of ferroptosis\",\"authors\":\"Bjarne Goebel, Laura Carpanedo, Susanne Reif, Tamara Göbel, Svenja Simonyi, Nils Helge Schebb, Dieter Steinhilber, Ann-Kathrin Häfner\",\"doi\":\"10.3389/fceld.2023.1182239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since 2005, the original three cell death mechanisms apoptosis, autophagy and necrosis are accompanied by several new forms. The most recent member, ferroptosis, was first described in 2012 and is characterized by the accumulation of iron and increased lipid peroxidation. In this study, we present a model system to study ferroptotic states in stably transfected HEK293T cells, using acyl-CoA synthetase long chain family member 4 (ACSL4), a biomarker of ferroptosis, and/or lysophosphatidylcholine acyltransferase 2 (LPCAT2), a transferase responsible for the lipid remodeling process. In addition, we introduced an inducible expression system for 5-lipoxygenase (LO), 15-LO1 and 15-LO2, to trigger enzymatic lipid peroxidation. We characterized the system in terms of ACSL4, LPCAT2 and LO expression both on Western blot level and by laser scanning confocal microscopy as well as the intracellular localization of all enzymes. Furthermore, we verified inducibility and activity of our LOs and, in addition, analyzed non-esterified (free) and total amounts of oxylipins. When cells were incubated with the ferroptosis-inducing agents GPX4 inhibitor RSL3 or GSH reducing erastin, we observed a decrease in cell viability that was strongly enhanced in the presence of ACSL4 and LPCAT2. Interestingly, additional expression of LPCAT2 resulted in altered localization of 15-LO1, which shifted from the cytosol to the nuclear membrane. A similar localization occurred after treatment with RSL3. Therefore, on one hand, we propose that LPCAT2 is an acyltransferase that promotes ferroptotic conditions, and on the other hand, we introduce a new cell-based model system suitable for studying ferroptosis.\",\"PeriodicalId\":73072,\"journal\":{\"name\":\"Frontiers in cell death\",\"volume\":\"46 27\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in cell death\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fceld.2023.1182239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in cell death","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fceld.2023.1182239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2005年以来,细胞凋亡、自噬和坏死这三种原有的细胞死亡机制出现了几种新的死亡形式。最近的成员,铁下垂,于2012年首次被描述,其特征是铁积累和脂质过氧化增加。在这项研究中,我们提出了一个模型系统来研究稳定转染HEK293T细胞的铁死亡状态,使用酰基辅酶a合成酶长链家族成员4 (ACSL4),铁死亡的生物标志物,和/或溶血磷脂酰choline酰基转移酶2 (LPCAT2),一种负责脂质重塑过程的转移酶。此外,我们还引入了5-脂氧合酶(LO), 15-LO1和15-LO2的诱导表达系统,以触发酶促脂质过氧化。我们通过Western blot和激光扫描共聚焦显微镜检测ACSL4、LPCAT2和LO的表达以及所有酶的细胞内定位来表征该系统。此外,我们验证了我们的LOs的诱导性和活性,并分析了未酯化(游离)和总氧脂质的含量。当细胞与诱导铁凋亡的GPX4抑制剂RSL3或GSH还原erastin一起孵育时,我们观察到细胞活力下降,在ACSL4和LPCAT2的存在下,细胞活力明显增强。有趣的是,LPCAT2的额外表达导致15-LO1的定位改变,从细胞质转移到核膜。RSL3治疗后出现类似的定位。因此,我们一方面提出LPCAT2是一种促进铁死亡条件的酰基转移酶,另一方面,我们引入了一种新的适合研究铁死亡的基于细胞的模型系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a cell-based model system for the investigation of ferroptosis
Since 2005, the original three cell death mechanisms apoptosis, autophagy and necrosis are accompanied by several new forms. The most recent member, ferroptosis, was first described in 2012 and is characterized by the accumulation of iron and increased lipid peroxidation. In this study, we present a model system to study ferroptotic states in stably transfected HEK293T cells, using acyl-CoA synthetase long chain family member 4 (ACSL4), a biomarker of ferroptosis, and/or lysophosphatidylcholine acyltransferase 2 (LPCAT2), a transferase responsible for the lipid remodeling process. In addition, we introduced an inducible expression system for 5-lipoxygenase (LO), 15-LO1 and 15-LO2, to trigger enzymatic lipid peroxidation. We characterized the system in terms of ACSL4, LPCAT2 and LO expression both on Western blot level and by laser scanning confocal microscopy as well as the intracellular localization of all enzymes. Furthermore, we verified inducibility and activity of our LOs and, in addition, analyzed non-esterified (free) and total amounts of oxylipins. When cells were incubated with the ferroptosis-inducing agents GPX4 inhibitor RSL3 or GSH reducing erastin, we observed a decrease in cell viability that was strongly enhanced in the presence of ACSL4 and LPCAT2. Interestingly, additional expression of LPCAT2 resulted in altered localization of 15-LO1, which shifted from the cytosol to the nuclear membrane. A similar localization occurred after treatment with RSL3. Therefore, on one hand, we propose that LPCAT2 is an acyltransferase that promotes ferroptotic conditions, and on the other hand, we introduce a new cell-based model system suitable for studying ferroptosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The sea urchin embryo and the cell stress responses: new perspectives Non-canonical functions of regulated cell death machinery regulate cellular growth, invasion and the interplay between cell death modalities Regulatory signaling pathways of osteoblast autophagy in periprosthetic osteolysis Regulatory signaling pathways of osteoblast autophagy in periprosthetic osteolysis Small heat shock proteins as modulators of cell death in Plasmodium falciparum parasites and its human host
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1