Cell death shapes multicellular organism development and sustains tissue and organ homeostasis. Great progress has been made in understanding the breadth of physiological and biochemical diversity in cell death and clearance pathways, which play vital roles in organismal development and health. While apoptosis and necrosis have been studied extensively across many model systems and contexts, the discovery of non-apoptotic paradigms of cell death and their roles in disease has greatly expanded the field. Collectively called Regulated Cell Death, these death pathways operate in a tissue and context-dependent manner. Germ cells in many organisms develop in cysts of interconnected cells, and may die in response to environmental or developmental cues. Recent findings suggest that germ cell cysts may use a common mechanism of non-apoptotic cell death involving phagocytic and lysosomal activity of surrounding somatic cells. Cyst cell death has been analyzed most thoroughly in the Drosophila adult ovary and testis, with remarkable similarity to cyst cell death in mouse adult testis and fetal ovary. In this review, we highlight recent progress in deciphering germline cyst cell death.
{"title":"Sacrificing cells of the cyst: non-apoptotic cell death in germline cysts via acidification.","authors":"Shruthi Bandyadka, Logan Tohline, Georgette-Vanelle Wandji, Hila Toledano, Kimberly McCall","doi":"10.3389/fceld.2025.1677498","DOIUrl":"10.3389/fceld.2025.1677498","url":null,"abstract":"<p><p>Cell death shapes multicellular organism development and sustains tissue and organ homeostasis. Great progress has been made in understanding the breadth of physiological and biochemical diversity in cell death and clearance pathways, which play vital roles in organismal development and health. While apoptosis and necrosis have been studied extensively across many model systems and contexts, the discovery of non-apoptotic paradigms of cell death and their roles in disease has greatly expanded the field. Collectively called Regulated Cell Death, these death pathways operate in a tissue and context-dependent manner. Germ cells in many organisms develop in cysts of interconnected cells, and may die in response to environmental or developmental cues. Recent findings suggest that germ cell cysts may use a common mechanism of non-apoptotic cell death involving phagocytic and lysosomal activity of surrounding somatic cells. Cyst cell death has been analyzed most thoroughly in the <i>Drosophila</i> adult ovary and testis, with remarkable similarity to cyst cell death in mouse adult testis and fetal ovary. In this review, we highlight recent progress in deciphering germline cyst cell death.</p>","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"4 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12716865/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145806671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-03-18DOI: 10.3389/fceld.2025.1470093
Raveena Parbhudayal, Hai-Ping Cheng
When yeast cells are transferred to water only, they remain viable for several days. However, when transferred to water with glucose, there is a rapid loss of viability. This phenomenon is termed Sugar-Induced Cell Death (SICD). In addition to glucose, SICD can be induced by an array of different sugars and is thought to be triggered by increased levels of intracellular reactive oxygen species (ROS) generated upon transfer to sugar-only solutions. Although not termed SICD, a similar response is observed in mammalian cells, whereby high glucose induces cell death, especially in cases of hyperglycemia and diabetes. In contrast, cancer cells thrive under conditions of high glucose. In this review, we summarize the current understanding of SICD in yeast and highlight studies showing the presence of a similar phenomenon in mammalian cells, High Glucose-Induced Cell Death (HGICD). We end with a discussion on mechanisms by which cancer cells evade HGICD. Unlike other types of cell death in yeast, SICD has not yet been thoroughly reviewed. Therefore, this review represents the first comprehensive review of SICD in yeast with a comparison to HGICD in other eukaryotes.
{"title":"Exploring Sugar-Induced Cell Death (SICD) in Yeast: Implications for Diabetes and Cancer Research.","authors":"Raveena Parbhudayal, Hai-Ping Cheng","doi":"10.3389/fceld.2025.1470093","DOIUrl":"10.3389/fceld.2025.1470093","url":null,"abstract":"<p><p>When yeast cells are transferred to water only, they remain viable for several days. However, when transferred to water with glucose, there is a rapid loss of viability. This phenomenon is termed Sugar-Induced Cell Death (SICD). In addition to glucose, SICD can be induced by an array of different sugars and is thought to be triggered by increased levels of intracellular reactive oxygen species (ROS) generated upon transfer to sugar-only solutions. Although not termed SICD, a similar response is observed in mammalian cells, whereby high glucose induces cell death, especially in cases of hyperglycemia and diabetes. In contrast, cancer cells thrive under conditions of high glucose. In this review, we summarize the current understanding of SICD in yeast and highlight studies showing the presence of a similar phenomenon in mammalian cells, High Glucose-Induced Cell Death (HGICD). We end with a discussion on mechanisms by which cancer cells evade HGICD. Unlike other types of cell death in yeast, SICD has not yet been thoroughly reviewed. Therefore, this review represents the first comprehensive review of SICD in yeast with a comparison to HGICD in other eukaryotes.</p>","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"4 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12539669/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145350200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glucose deprivation (GD), a common metabolic stress condition, has been recognized as a potent inducer of necroptotic cell death. Our previous findings suggested that the mitochondrial protein, Noxa, may be involved in mediating the release of mitochondrial DNA during GD-induced ZBP1-dependent necroptotic pathway. However, the functional significance of Noxa in necroptosis under GD treatment remains unclear. Here, we investigated the role of Noxa in GD-induced necroptosis and the underlying molecular mechanisms governing its expression. We revealed that Noxa is required for the induction of necroptosis under GD. We also demonstrated that the upregulation of Noxa induced by GD is mediated by ATF4, a key transcription factor. These results provide insights into the regulatory mechanisms underlying Noxa dynamics during GD treatment and highlights its potential as a therapeutic target in cancer therapy and necroptosis-related diseases.
{"title":"ATF4-mediated expression of NOXA is critical for Necroptosis driven by Glucose Deprivation.","authors":"Sasiprapa Sonkaew, Ruwaida Rajna, Yeon-Ji Park, Jiong Yan, Zhaoshan Liu, Siriporn Jitkaew, Zheng-Gang Liu, Swati Choksi","doi":"10.3389/fceld.2024.1507960","DOIUrl":"10.3389/fceld.2024.1507960","url":null,"abstract":"<p><p>Glucose deprivation (GD), a common metabolic stress condition, has been recognized as a potent inducer of necroptotic cell death. Our previous findings suggested that the mitochondrial protein, Noxa, may be involved in mediating the release of mitochondrial DNA during GD-induced ZBP1-dependent necroptotic pathway. However, the functional significance of Noxa in necroptosis under GD treatment remains unclear. Here, we investigated the role of Noxa in GD-induced necroptosis and the underlying molecular mechanisms governing its expression. We revealed that Noxa is required for the induction of necroptosis under GD. We also demonstrated that the upregulation of Noxa induced by GD is mediated by ATF4, a key transcription factor. These results provide insights into the regulatory mechanisms underlying Noxa dynamics during GD treatment and highlights its potential as a therapeutic target in cancer therapy and necroptosis-related diseases.</p>","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"3 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12346952/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144849917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.3389/fceld.2024.1422224
I. Deidda, R. Russo, Nadia Lampiasi, F. Zito, R. Bonaventura
In addition to many industrial activities that release pollutants in coastal areas, numerous human behaviors contribute to climate change, inducing global warming, which can also reshape the environmental impacts of some pollutants. Therefore, it is extremely important to develop new tools that can detect pollutants and environmental changes quickly and easily with high levels of sensitivity. The sea urchin embryo is a well-known model used worldwide in many research fields, including marine ecotoxicology, as a huge range of contaminants can affect its embryonic development with species-specific sensitivity. Morphological abnormalities are already considered biomarkers to evaluate the effects of pollutants, and, indeed, the sea urchin has long been used as one of the key species in a battery of bioassays to assess the toxicity of many pollutants and dredged sediments. At the cellular level, the molecular mechanisms activated against a stress agent constitute what is known as the “cell stress response,” analyzed here within a whole organism, namely, the sea urchin embryo. In this minireview, we have reported the available molecular biomarkers linked to morphological abnormalities and the genes affected by environmental changes and emerging pollutants, highlighting those studies that use high-throughput screening approaches to evaluate the effects of environmental conditions on sea urchin embryos.
{"title":"The sea urchin embryo and the cell stress responses: new perspectives","authors":"I. Deidda, R. Russo, Nadia Lampiasi, F. Zito, R. Bonaventura","doi":"10.3389/fceld.2024.1422224","DOIUrl":"https://doi.org/10.3389/fceld.2024.1422224","url":null,"abstract":"In addition to many industrial activities that release pollutants in coastal areas, numerous human behaviors contribute to climate change, inducing global warming, which can also reshape the environmental impacts of some pollutants. Therefore, it is extremely important to develop new tools that can detect pollutants and environmental changes quickly and easily with high levels of sensitivity. The sea urchin embryo is a well-known model used worldwide in many research fields, including marine ecotoxicology, as a huge range of contaminants can affect its embryonic development with species-specific sensitivity. Morphological abnormalities are already considered biomarkers to evaluate the effects of pollutants, and, indeed, the sea urchin has long been used as one of the key species in a battery of bioassays to assess the toxicity of many pollutants and dredged sediments. At the cellular level, the molecular mechanisms activated against a stress agent constitute what is known as the “cell stress response,” analyzed here within a whole organism, namely, the sea urchin embryo. In this minireview, we have reported the available molecular biomarkers linked to morphological abnormalities and the genes affected by environmental changes and emerging pollutants, highlighting those studies that use high-throughput screening approaches to evaluate the effects of environmental conditions on sea urchin embryos.","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"26 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141813661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.3389/fceld.2024.1423805
Y. Shan, B. Mollereau
The exploration of multiple regulated cell death (RCD) pathways and the recognition that several cell death-related proteins, including caspases, serve non-canonical roles have significantly expanded and diversified cell death research. Caspases not only cleave cellular substrates, triggering apoptosis, but also impact essential processes such as cellular differentiation, proliferation, growth, and migration. These novel caspase-dependent regulatory networks are extensively studied during development, with Drosophila providing a diverse range of developmental models for investigating these phenomena. Moreover, recent insights into the non-canonical functions of cell death proteins have highlighted their pivotal role in cancer aggressiveness. Ultimately, understanding these non-canonical functions sheds light on the intricate connections between RCD pathways and their significance in promoting anti-oncogenic responses.
{"title":"Non-canonical functions of regulated cell death machinery regulate cellular growth, invasion and the interplay between cell death modalities","authors":"Y. Shan, B. Mollereau","doi":"10.3389/fceld.2024.1423805","DOIUrl":"https://doi.org/10.3389/fceld.2024.1423805","url":null,"abstract":"The exploration of multiple regulated cell death (RCD) pathways and the recognition that several cell death-related proteins, including caspases, serve non-canonical roles have significantly expanded and diversified cell death research. Caspases not only cleave cellular substrates, triggering apoptosis, but also impact essential processes such as cellular differentiation, proliferation, growth, and migration. These novel caspase-dependent regulatory networks are extensively studied during development, with Drosophila providing a diverse range of developmental models for investigating these phenomena. Moreover, recent insights into the non-canonical functions of cell death proteins have highlighted their pivotal role in cancer aggressiveness. Ultimately, understanding these non-canonical functions sheds light on the intricate connections between RCD pathways and their significance in promoting anti-oncogenic responses.","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"29 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141647978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.3389/fceld.2024.1337724
YingChu Gu, ZeRui Wu, Heng Xie, Tao Fang, Qiufei Wang, Ye Gu
Periprosthetic osteolysis is a difficult-to-treat complication of arthroplasty. The pathological mechanisms of periprosthetic osteolysis are mainly weakened function of osteoblasts and excessive activation of osteoclasts. Many studies have demonstrated that the imbalance between the formation of bone by osteoblasts and the absorption of bone by osteoclasts is the direct cause of osteolytic diseases. Autophagy, as an important self-protective cellular mechanism, has significant effects on the regulation of osteoblast function, such as osteoblast differentiation, proliferation, and apoptosis. Osteoblasts, which play an important role in maintaining bone homeostasis, have attracted increasing attention in recent years. Up till now, Several signaling pathways have been proved to regulate autophagy of osteoblasts, including the AMPK, NF-κB, FoxO3 and other signaling pathways. This article reviews the recent progress in understanding osteoblast autophagy and mitophagy in the context of periprosthetic osteolysis and the signaling pathways which are involved in these processes. By summarizing previous studies describing the mechanism underlying osteoblast autophagy, we wish to contribute new therapeutic ideas and potential therapeutic targets for periprosthetic osteolysis.
{"title":"Regulatory signaling pathways of osteoblast autophagy in periprosthetic osteolysis","authors":"YingChu Gu, ZeRui Wu, Heng Xie, Tao Fang, Qiufei Wang, Ye Gu","doi":"10.3389/fceld.2024.1337724","DOIUrl":"https://doi.org/10.3389/fceld.2024.1337724","url":null,"abstract":"Periprosthetic osteolysis is a difficult-to-treat complication of arthroplasty. The pathological mechanisms of periprosthetic osteolysis are mainly weakened function of osteoblasts and excessive activation of osteoclasts. Many studies have demonstrated that the imbalance between the formation of bone by osteoblasts and the absorption of bone by osteoclasts is the direct cause of osteolytic diseases. Autophagy, as an important self-protective cellular mechanism, has significant effects on the regulation of osteoblast function, such as osteoblast differentiation, proliferation, and apoptosis. Osteoblasts, which play an important role in maintaining bone homeostasis, have attracted increasing attention in recent years. Up till now, Several signaling pathways have been proved to regulate autophagy of osteoblasts, including the AMPK, NF-κB, FoxO3 and other signaling pathways. This article reviews the recent progress in understanding osteoblast autophagy and mitophagy in the context of periprosthetic osteolysis and the signaling pathways which are involved in these processes. By summarizing previous studies describing the mechanism underlying osteoblast autophagy, we wish to contribute new therapeutic ideas and potential therapeutic targets for periprosthetic osteolysis.","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139864238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.3389/fceld.2024.1337724
YingChu Gu, ZeRui Wu, Heng Xie, Tao Fang, Qiufei Wang, Ye Gu
Periprosthetic osteolysis is a difficult-to-treat complication of arthroplasty. The pathological mechanisms of periprosthetic osteolysis are mainly weakened function of osteoblasts and excessive activation of osteoclasts. Many studies have demonstrated that the imbalance between the formation of bone by osteoblasts and the absorption of bone by osteoclasts is the direct cause of osteolytic diseases. Autophagy, as an important self-protective cellular mechanism, has significant effects on the regulation of osteoblast function, such as osteoblast differentiation, proliferation, and apoptosis. Osteoblasts, which play an important role in maintaining bone homeostasis, have attracted increasing attention in recent years. Up till now, Several signaling pathways have been proved to regulate autophagy of osteoblasts, including the AMPK, NF-κB, FoxO3 and other signaling pathways. This article reviews the recent progress in understanding osteoblast autophagy and mitophagy in the context of periprosthetic osteolysis and the signaling pathways which are involved in these processes. By summarizing previous studies describing the mechanism underlying osteoblast autophagy, we wish to contribute new therapeutic ideas and potential therapeutic targets for periprosthetic osteolysis.
{"title":"Regulatory signaling pathways of osteoblast autophagy in periprosthetic osteolysis","authors":"YingChu Gu, ZeRui Wu, Heng Xie, Tao Fang, Qiufei Wang, Ye Gu","doi":"10.3389/fceld.2024.1337724","DOIUrl":"https://doi.org/10.3389/fceld.2024.1337724","url":null,"abstract":"Periprosthetic osteolysis is a difficult-to-treat complication of arthroplasty. The pathological mechanisms of periprosthetic osteolysis are mainly weakened function of osteoblasts and excessive activation of osteoclasts. Many studies have demonstrated that the imbalance between the formation of bone by osteoblasts and the absorption of bone by osteoclasts is the direct cause of osteolytic diseases. Autophagy, as an important self-protective cellular mechanism, has significant effects on the regulation of osteoblast function, such as osteoblast differentiation, proliferation, and apoptosis. Osteoblasts, which play an important role in maintaining bone homeostasis, have attracted increasing attention in recent years. Up till now, Several signaling pathways have been proved to regulate autophagy of osteoblasts, including the AMPK, NF-κB, FoxO3 and other signaling pathways. This article reviews the recent progress in understanding osteoblast autophagy and mitophagy in the context of periprosthetic osteolysis and the signaling pathways which are involved in these processes. By summarizing previous studies describing the mechanism underlying osteoblast autophagy, we wish to contribute new therapeutic ideas and potential therapeutic targets for periprosthetic osteolysis.","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"72 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139804576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-03-08DOI: 10.3389/fceld.2024.1348153
Kaitlan Smith, Meagan Colie, Trinity Moore, Jonathan C Schisler
The pro-inflammatory form of cellular death, necroptosis, is critical to age-related pathologies. Necroptosis primarily functions as an antipathogenic and antitumor biological mechanism by triggering inflammatory pathways within rogue cell bodies, resulting in cell death. Several neurodegenerative conditions have hallmarks of necroptosis, suggesting a potential role for this cell death pathway in the pathogenesis of neuroinflammation and neuronal cell death, likely through the release of pro-inflammatory cytokines that perpetuate inflammatory signaling and neurodegeneration. The receptor-interacting protein kinases 1 and 3 (RIPK1/3) signaling cascade is critical to necroptosis regulation; however, the complete mechanism behind necroptotic activation, regulation, and resolution remains incomplete. In cases where necroptosis is disadvantageous, such as neurodegenerative diseases, we lack effective pharmacological suppressors of necroptosis that could mitigate disease progression. Targeting regulatory proteins within the necroptotic signaling pathway has shown promise; however, the need for specific inhibitors limits therapeutic opportunities. This review focuses on necroptosis and its role in neuroinflammation and neurodegeneration in age-dependent disorders. We comprehensively detail the known necroptotic signaling pathways and potential signaling partners and discuss the ongoing therapeutic efforts in targeting and preventing active necroptotic signaling and their relevance to neuroprotection.
{"title":"Die Hard: Necroptosis and its Impact on Age-Dependent Neuroinflammatory Diseases.","authors":"Kaitlan Smith, Meagan Colie, Trinity Moore, Jonathan C Schisler","doi":"10.3389/fceld.2024.1348153","DOIUrl":"10.3389/fceld.2024.1348153","url":null,"abstract":"<p><p>The pro-inflammatory form of cellular death, necroptosis, is critical to age-related pathologies. Necroptosis primarily functions as an antipathogenic and antitumor biological mechanism by triggering inflammatory pathways within rogue cell bodies, resulting in cell death. Several neurodegenerative conditions have hallmarks of necroptosis, suggesting a potential role for this cell death pathway in the pathogenesis of neuroinflammation and neuronal cell death, likely through the release of pro-inflammatory cytokines that perpetuate inflammatory signaling and neurodegeneration. The receptor-interacting protein kinases 1 and 3 (RIPK1/3) signaling cascade is critical to necroptosis regulation; however, the complete mechanism behind necroptotic activation, regulation, and resolution remains incomplete. In cases where necroptosis is disadvantageous, such as neurodegenerative diseases, we lack effective pharmacological suppressors of necroptosis that could mitigate disease progression. Targeting regulatory proteins within the necroptotic signaling pathway has shown promise; however, the need for specific inhibitors limits therapeutic opportunities. This review focuses on necroptosis and its role in neuroinflammation and neurodegeneration in age-dependent disorders. We comprehensively detail the known necroptotic signaling pathways and potential signaling partners and discuss the ongoing therapeutic efforts in targeting and preventing active necroptotic signaling and their relevance to neuroprotection.</p>","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"3 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309338/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144755259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-11-19DOI: 10.3389/fceld.2024.1471050
Hans-Martin Herz, Andreas Bergmann
We conducted an EMS mutagenesis screen on chromosome arm 2L to identify recessive suppressors of GMR-hid-induced apoptosis in the Drosophila eye. Through this screen, we recovered three alleles of the lysine demethylase gene Kdm5. Kdm5, a member of the JmjC-domain-containing protein family, possesses histone demethylase activity towards H3K4me3. Our data suggest that Kdm5 specifically regulates Hid-induced cell death during development, as we did not observe control of Reaper- or Grim-induced cell death by Kdm5. Interestingly, GMR-hid-induced apoptosis is suppressed independently of Kdm5's demethylase activity. Our findings indicate that Rbf and dMyc are necessary for Kdm5 mosaics to suppress GMR-hid-induced cell death. Moreover, Kdm5 mosaics failed to suppress apoptosis induced by a mutant form of Hid that is resistant to inhibition by Erk-type MAPK activity. Additionally, Kdm5 dominantly enhances the wing phenotype of an activated MAPK mutant. These results collectively suggest that Kdm5 controls Hid-induced apoptosis by regulating the Rbf, dMyc, and MAPK pathways.
{"title":"The histone demethylase Kdm5 controls Hid-induced cell death in <i>Drosophila</i>.","authors":"Hans-Martin Herz, Andreas Bergmann","doi":"10.3389/fceld.2024.1471050","DOIUrl":"10.3389/fceld.2024.1471050","url":null,"abstract":"<p><p>We conducted an EMS mutagenesis screen on chromosome arm 2L to identify recessive suppressors of <i>GMR-hid</i>-induced apoptosis in the <i>Drosophila</i> eye. Through this screen, we recovered three alleles of the lysine demethylase gene <i>Kdm5</i>. Kdm5, a member of the JmjC-domain-containing protein family, possesses histone demethylase activity towards H3K4me3. Our data suggest that Kdm5 specifically regulates Hid-induced cell death during development, as we did not observe control of Reaper- or Grim-induced cell death by <i>Kdm5</i>. Interestingly, <i>GMR-hid</i>-induced apoptosis is suppressed independently of Kdm5's demethylase activity. Our findings indicate that Rbf and dMyc are necessary for <i>Kdm5</i> mosaics to suppress <i>GMR-hid</i>-induced cell death. Moreover, <i>Kdm5</i> mosaics failed to suppress apoptosis induced by a mutant form of Hid that is resistant to inhibition by Erk-type MAPK activity. Additionally, <i>Kdm5</i> dominantly enhances the wing phenotype of an activated MAPK mutant. These results collectively suggest that Kdm5 controls Hid-induced apoptosis by regulating the Rbf, dMyc, and MAPK pathways.</p>","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"3 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144144906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-29DOI: 10.3389/fceld.2023.1322780
Francisca Magum Timothy, T. Zininga
Plasmodium falciparum, the predominant cause of severe malaria, thrives within both poikilotherm mosquitoes and homeotherm humans, navigating challenging temperature shifts during its life cycle. Survival in such varying environments necessitate the development of robust mechanisms, including a sophisticated protein folding system to mitigate proteopathy. The parasite needs to control the survival of its host cells which affects its chances of development and propagation. Central to this system are heat shock proteins (Hsps), among which small Hsps (sHsps) play pivotal roles in maintaining proteostasis (protein homeostasis). In both humans and P. falciparum, numerous sHsps have been identified, making them attractive candidates as biomarkers for diagnostic and drug development strategies. Evidence is accumulating suggesting that these sHsps participate in cell death processes, potentially influencing disease pathogenesis. Despite their significance, the precise functions of sHsps in P. falciparum’s adaptation to stress conditions remains largely unknown. Comparative structural analysis of sHsps between human and P. falciparum reveals species-specific variations. Despite conserved tertiary structures, unique motifs are found in parasite sHsps which may modulate specialised chaperone functions. This review discusses the conserved and distinctive motifs of sHsps from the human host and the parasite, offering insights into shared and unique attributes. These findings illuminate the potential for species-specific targeting of sHsps, as players in cell death processes that may foster innovative biomarker identification approaches. As malaria continues to ravage Sub-Saharan Africa, understanding the molecular intricacies guiding parasite survival are essential in the development of interventions with heightened efficacy against this global health crisis.
{"title":"Small heat shock proteins as modulators of cell death in Plasmodium falciparum parasites and its human host","authors":"Francisca Magum Timothy, T. Zininga","doi":"10.3389/fceld.2023.1322780","DOIUrl":"https://doi.org/10.3389/fceld.2023.1322780","url":null,"abstract":"Plasmodium falciparum, the predominant cause of severe malaria, thrives within both poikilotherm mosquitoes and homeotherm humans, navigating challenging temperature shifts during its life cycle. Survival in such varying environments necessitate the development of robust mechanisms, including a sophisticated protein folding system to mitigate proteopathy. The parasite needs to control the survival of its host cells which affects its chances of development and propagation. Central to this system are heat shock proteins (Hsps), among which small Hsps (sHsps) play pivotal roles in maintaining proteostasis (protein homeostasis). In both humans and P. falciparum, numerous sHsps have been identified, making them attractive candidates as biomarkers for diagnostic and drug development strategies. Evidence is accumulating suggesting that these sHsps participate in cell death processes, potentially influencing disease pathogenesis. Despite their significance, the precise functions of sHsps in P. falciparum’s adaptation to stress conditions remains largely unknown. Comparative structural analysis of sHsps between human and P. falciparum reveals species-specific variations. Despite conserved tertiary structures, unique motifs are found in parasite sHsps which may modulate specialised chaperone functions. This review discusses the conserved and distinctive motifs of sHsps from the human host and the parasite, offering insights into shared and unique attributes. These findings illuminate the potential for species-specific targeting of sHsps, as players in cell death processes that may foster innovative biomarker identification approaches. As malaria continues to ravage Sub-Saharan Africa, understanding the molecular intricacies guiding parasite survival are essential in the development of interventions with heightened efficacy against this global health crisis.","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139209681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}