{"title":"昂贵优化问题的代理集成辅助超启发式算法","authors":"Rui Zhong, Jun Yu, Chao Zhang, Masaharu Munetomo","doi":"10.1007/s44196-023-00346-y","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes a novel surrogate ensemble-assisted hyper-heuristic algorithm (SEA-HHA) to solve expensive optimization problems (EOPs). A representative HHA consists of two parts: the low-level and the high-level components. In the low-level component, we regard the surrogate-assisted technique as a type of search strategy and design the four search strategy archives: exploration strategy archive, exploitation strategy archive, surrogate-assisted estimation archive, and mutation strategy archive as low-level heuristics (LLHs), each archive contains one or more search strategies. Once the surrogate-assisted estimation archive is activated to generate the offspring individual, SEA-HHA first selects the dataset for model construction from three principles: All Data , Recent Data , and Neighbor , which correspond to the global and the local surrogate model, respectively. Then, the dataset is randomly divided into training and validation data, and the most accurate model built by polynomial regression (PR), support vector regression (SVR), and Gaussian process regression (GPR) cooperates with the infill sampling criterion is employed for solution estimation. In the high-level component, we design a random selection function based on the pre-defined probabilities to manipulate a set of LLHs. In numerical experiments, we compare SEA-HHA with six optimization techniques on 5-D, 10-D, and 30-D CEC2013 benchmark functions and three engineering optimization problems with only 1000 fitness evaluation times (FEs). The experimental and statistical results show that our proposed SEA-HHA has broad prospects for dealing with EOPs.","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"3 9","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surrogate Ensemble-Assisted Hyper-Heuristic Algorithm for Expensive Optimization Problems\",\"authors\":\"Rui Zhong, Jun Yu, Chao Zhang, Masaharu Munetomo\",\"doi\":\"10.1007/s44196-023-00346-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper proposes a novel surrogate ensemble-assisted hyper-heuristic algorithm (SEA-HHA) to solve expensive optimization problems (EOPs). A representative HHA consists of two parts: the low-level and the high-level components. In the low-level component, we regard the surrogate-assisted technique as a type of search strategy and design the four search strategy archives: exploration strategy archive, exploitation strategy archive, surrogate-assisted estimation archive, and mutation strategy archive as low-level heuristics (LLHs), each archive contains one or more search strategies. Once the surrogate-assisted estimation archive is activated to generate the offspring individual, SEA-HHA first selects the dataset for model construction from three principles: All Data , Recent Data , and Neighbor , which correspond to the global and the local surrogate model, respectively. Then, the dataset is randomly divided into training and validation data, and the most accurate model built by polynomial regression (PR), support vector regression (SVR), and Gaussian process regression (GPR) cooperates with the infill sampling criterion is employed for solution estimation. In the high-level component, we design a random selection function based on the pre-defined probabilities to manipulate a set of LLHs. In numerical experiments, we compare SEA-HHA with six optimization techniques on 5-D, 10-D, and 30-D CEC2013 benchmark functions and three engineering optimization problems with only 1000 fitness evaluation times (FEs). The experimental and statistical results show that our proposed SEA-HHA has broad prospects for dealing with EOPs.\",\"PeriodicalId\":54967,\"journal\":{\"name\":\"International Journal of Computational Intelligence Systems\",\"volume\":\"3 9\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Intelligence Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44196-023-00346-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44196-023-00346-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surrogate Ensemble-Assisted Hyper-Heuristic Algorithm for Expensive Optimization Problems
Abstract This paper proposes a novel surrogate ensemble-assisted hyper-heuristic algorithm (SEA-HHA) to solve expensive optimization problems (EOPs). A representative HHA consists of two parts: the low-level and the high-level components. In the low-level component, we regard the surrogate-assisted technique as a type of search strategy and design the four search strategy archives: exploration strategy archive, exploitation strategy archive, surrogate-assisted estimation archive, and mutation strategy archive as low-level heuristics (LLHs), each archive contains one or more search strategies. Once the surrogate-assisted estimation archive is activated to generate the offspring individual, SEA-HHA first selects the dataset for model construction from three principles: All Data , Recent Data , and Neighbor , which correspond to the global and the local surrogate model, respectively. Then, the dataset is randomly divided into training and validation data, and the most accurate model built by polynomial regression (PR), support vector regression (SVR), and Gaussian process regression (GPR) cooperates with the infill sampling criterion is employed for solution estimation. In the high-level component, we design a random selection function based on the pre-defined probabilities to manipulate a set of LLHs. In numerical experiments, we compare SEA-HHA with six optimization techniques on 5-D, 10-D, and 30-D CEC2013 benchmark functions and three engineering optimization problems with only 1000 fitness evaluation times (FEs). The experimental and statistical results show that our proposed SEA-HHA has broad prospects for dealing with EOPs.
期刊介绍:
The International Journal of Computational Intelligence Systems publishes original research on all aspects of applied computational intelligence, especially targeting papers demonstrating the use of techniques and methods originating from computational intelligence theory. The core theories of computational intelligence are fuzzy logic, neural networks, evolutionary computation and probabilistic reasoning. The journal publishes only articles related to the use of computational intelligence and broadly covers the following topics:
-Autonomous reasoning-
Bio-informatics-
Cloud computing-
Condition monitoring-
Data science-
Data mining-
Data visualization-
Decision support systems-
Fault diagnosis-
Intelligent information retrieval-
Human-machine interaction and interfaces-
Image processing-
Internet and networks-
Noise analysis-
Pattern recognition-
Prediction systems-
Power (nuclear) safety systems-
Process and system control-
Real-time systems-
Risk analysis and safety-related issues-
Robotics-
Signal and image processing-
IoT and smart environments-
Systems integration-
System control-
System modelling and optimization-
Telecommunications-
Time series prediction-
Warning systems-
Virtual reality-
Web intelligence-
Deep learning