Fedor N. Lisetskii, Zhanna A. Buryak, Olga A. Marinina, Pavel A. Ukrainskiy, Pavel V. Goleusov
{"title":"东欧平原南部地区土壤有机碳转化特征","authors":"Fedor N. Lisetskii, Zhanna A. Buryak, Olga A. Marinina, Pavel A. Ukrainskiy, Pavel V. Goleusov","doi":"10.3390/geosciences13090278","DOIUrl":null,"url":null,"abstract":"The active development of the problems related to the assessment of the role of the pedosphere in global climate change involves the possibility of application of the quantitative determination of soil organic carbon (SOC) as one of the indicators of a climatic response. Here, the authors have summarized the results of their own research over many years (1985–2023), comprising more than 500 determinations of SOC within the area of the Chernozem zone, in the south of the East European Plain (Moldova and Bessarabia, southern Ukraine, southwestern Russia), in the context of regional climate differentiation using evaluations of climatic energy consumption for soil formation. The data were structured for each of the regions through the creation of series of agrogenic soil transformations (virgin land, modern-day ploughed land (<100 years), continually ploughed land (>100 years), fallow land of the modern era (n·10 years), and post-antique long-term fallow land). It has been established, by means of statistical treatment of the data, that the intraregional differentiation of the bioclimatic conditions is the key factor determining the SOC content in the top horizon of soils in the south of the East European Plain. The comparison of the SOC content within the five variants of land use demonstrated that all the regions under study differed, with statistical significance only found in a single type of ‘continually ploughed land’ (>100 years). This fact reflects the leading role of the duration of agrarian loads in agropedogenesis. If the steppe Chernozems even 145 years ago had a SOC content of up to 4%, then the Chernozems in the forest-steppe zone, which used to have habitats with a SOC content of 4–7%, occupied the largest areas, and have now lost 30–40% of the original values in the 0–50 cm layer. Besides the rates of the SOC degradation, which are known and are comprehensively evaluated in the present work, the phenomenon of progradation was established in certain situations, in particular arising during the rotation regime of land use (from ploughing to fallow fields, and vice versa), which stimulated effective mechanisms of reproduction of organic substances. Thus, in one of the ancient agricultural regions, where in antiquity the land was cultivated by such ancient Greek states as Tauric Chersonesos and the European Bosporos in Crimea, post-antique long-term fallow lands possess higher SOC contents than their virgin analogues. It is not justified to consider virgin lands as absolute references for the evaluation of the humus conditions since the analysis of agrogenic series of Chernozems has corroborated an essential role of the soil organo-mineral matrix in the formation of the carbon protection capacity.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"61 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Features of Soil Organic Carbon Transformations in the Southern Area of the East European Plain\",\"authors\":\"Fedor N. Lisetskii, Zhanna A. Buryak, Olga A. Marinina, Pavel A. Ukrainskiy, Pavel V. Goleusov\",\"doi\":\"10.3390/geosciences13090278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The active development of the problems related to the assessment of the role of the pedosphere in global climate change involves the possibility of application of the quantitative determination of soil organic carbon (SOC) as one of the indicators of a climatic response. Here, the authors have summarized the results of their own research over many years (1985–2023), comprising more than 500 determinations of SOC within the area of the Chernozem zone, in the south of the East European Plain (Moldova and Bessarabia, southern Ukraine, southwestern Russia), in the context of regional climate differentiation using evaluations of climatic energy consumption for soil formation. The data were structured for each of the regions through the creation of series of agrogenic soil transformations (virgin land, modern-day ploughed land (<100 years), continually ploughed land (>100 years), fallow land of the modern era (n·10 years), and post-antique long-term fallow land). It has been established, by means of statistical treatment of the data, that the intraregional differentiation of the bioclimatic conditions is the key factor determining the SOC content in the top horizon of soils in the south of the East European Plain. The comparison of the SOC content within the five variants of land use demonstrated that all the regions under study differed, with statistical significance only found in a single type of ‘continually ploughed land’ (>100 years). This fact reflects the leading role of the duration of agrarian loads in agropedogenesis. If the steppe Chernozems even 145 years ago had a SOC content of up to 4%, then the Chernozems in the forest-steppe zone, which used to have habitats with a SOC content of 4–7%, occupied the largest areas, and have now lost 30–40% of the original values in the 0–50 cm layer. Besides the rates of the SOC degradation, which are known and are comprehensively evaluated in the present work, the phenomenon of progradation was established in certain situations, in particular arising during the rotation regime of land use (from ploughing to fallow fields, and vice versa), which stimulated effective mechanisms of reproduction of organic substances. Thus, in one of the ancient agricultural regions, where in antiquity the land was cultivated by such ancient Greek states as Tauric Chersonesos and the European Bosporos in Crimea, post-antique long-term fallow lands possess higher SOC contents than their virgin analogues. It is not justified to consider virgin lands as absolute references for the evaluation of the humus conditions since the analysis of agrogenic series of Chernozems has corroborated an essential role of the soil organo-mineral matrix in the formation of the carbon protection capacity.\",\"PeriodicalId\":38189,\"journal\":{\"name\":\"Geosciences (Switzerland)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosciences (Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/geosciences13090278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosciences (Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geosciences13090278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Features of Soil Organic Carbon Transformations in the Southern Area of the East European Plain
The active development of the problems related to the assessment of the role of the pedosphere in global climate change involves the possibility of application of the quantitative determination of soil organic carbon (SOC) as one of the indicators of a climatic response. Here, the authors have summarized the results of their own research over many years (1985–2023), comprising more than 500 determinations of SOC within the area of the Chernozem zone, in the south of the East European Plain (Moldova and Bessarabia, southern Ukraine, southwestern Russia), in the context of regional climate differentiation using evaluations of climatic energy consumption for soil formation. The data were structured for each of the regions through the creation of series of agrogenic soil transformations (virgin land, modern-day ploughed land (<100 years), continually ploughed land (>100 years), fallow land of the modern era (n·10 years), and post-antique long-term fallow land). It has been established, by means of statistical treatment of the data, that the intraregional differentiation of the bioclimatic conditions is the key factor determining the SOC content in the top horizon of soils in the south of the East European Plain. The comparison of the SOC content within the five variants of land use demonstrated that all the regions under study differed, with statistical significance only found in a single type of ‘continually ploughed land’ (>100 years). This fact reflects the leading role of the duration of agrarian loads in agropedogenesis. If the steppe Chernozems even 145 years ago had a SOC content of up to 4%, then the Chernozems in the forest-steppe zone, which used to have habitats with a SOC content of 4–7%, occupied the largest areas, and have now lost 30–40% of the original values in the 0–50 cm layer. Besides the rates of the SOC degradation, which are known and are comprehensively evaluated in the present work, the phenomenon of progradation was established in certain situations, in particular arising during the rotation regime of land use (from ploughing to fallow fields, and vice versa), which stimulated effective mechanisms of reproduction of organic substances. Thus, in one of the ancient agricultural regions, where in antiquity the land was cultivated by such ancient Greek states as Tauric Chersonesos and the European Bosporos in Crimea, post-antique long-term fallow lands possess higher SOC contents than their virgin analogues. It is not justified to consider virgin lands as absolute references for the evaluation of the humus conditions since the analysis of agrogenic series of Chernozems has corroborated an essential role of the soil organo-mineral matrix in the formation of the carbon protection capacity.