CRISPR/Cas系统:细菌防御的基因编辑

Q3 Agricultural and Biological Sciences Novel Research in Microbiology Journal Pub Date : 2023-09-01 DOI:10.21608/nrmj.2023.317036
Amira H. El-Ashry
{"title":"CRISPR/Cas系统:细菌防御的基因编辑","authors":"Amira H. El-Ashry","doi":"10.21608/nrmj.2023.317036","DOIUrl":null,"url":null,"abstract":"The most precise, effective, and widely used tool for editing the genome is currently the clustered regularly interspaced short palindromic repeat (CRISPR), which represents the prokaryotes adaptive immune defense. The CRISPR/Cas-9 genome editing system relies on two key elements; mainly the guide RNA (gRNA) and CRISPR-associated ( Cas-9 ) proteins. A complementary base pair in the designed sgRNA allows it to recognize the target sequence in the gene of interest. Either the non-homologous end joining or the homology-directed repair can be used to repair the double-stranded breaks, which are created by Cas-9 nuclease at a position upstream from a protospacer adjacent motif. The modified genome-editing tool CRISPR/Cas-9 has numerous applications in the various fields, such as biotechnology and medicine. Moreover, it is being studied for cancer management; Human Immunodeficiency virus (HIV), and as a gene therapy for several genetic diseases, including cystic fibrosis; sickle cell disease, and Duchenne muscular dystrophy. However, immunogenicity; off-target effect, and efficient delivery systems withstand against its spread in the clinical applications until introducing an improvement. The aim of this review was to summarize how the various CRISPR systems work; their important medical applications, and their limitations.","PeriodicalId":34593,"journal":{"name":"Novel Research in Microbiology Journal","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The CRISPR/Cas system: Gene Editing by bacterial defense\",\"authors\":\"Amira H. El-Ashry\",\"doi\":\"10.21608/nrmj.2023.317036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most precise, effective, and widely used tool for editing the genome is currently the clustered regularly interspaced short palindromic repeat (CRISPR), which represents the prokaryotes adaptive immune defense. The CRISPR/Cas-9 genome editing system relies on two key elements; mainly the guide RNA (gRNA) and CRISPR-associated ( Cas-9 ) proteins. A complementary base pair in the designed sgRNA allows it to recognize the target sequence in the gene of interest. Either the non-homologous end joining or the homology-directed repair can be used to repair the double-stranded breaks, which are created by Cas-9 nuclease at a position upstream from a protospacer adjacent motif. The modified genome-editing tool CRISPR/Cas-9 has numerous applications in the various fields, such as biotechnology and medicine. Moreover, it is being studied for cancer management; Human Immunodeficiency virus (HIV), and as a gene therapy for several genetic diseases, including cystic fibrosis; sickle cell disease, and Duchenne muscular dystrophy. However, immunogenicity; off-target effect, and efficient delivery systems withstand against its spread in the clinical applications until introducing an improvement. The aim of this review was to summarize how the various CRISPR systems work; their important medical applications, and their limitations.\",\"PeriodicalId\":34593,\"journal\":{\"name\":\"Novel Research in Microbiology Journal\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Novel Research in Microbiology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/nrmj.2023.317036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Novel Research in Microbiology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/nrmj.2023.317036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The CRISPR/Cas system: Gene Editing by bacterial defense
The most precise, effective, and widely used tool for editing the genome is currently the clustered regularly interspaced short palindromic repeat (CRISPR), which represents the prokaryotes adaptive immune defense. The CRISPR/Cas-9 genome editing system relies on two key elements; mainly the guide RNA (gRNA) and CRISPR-associated ( Cas-9 ) proteins. A complementary base pair in the designed sgRNA allows it to recognize the target sequence in the gene of interest. Either the non-homologous end joining or the homology-directed repair can be used to repair the double-stranded breaks, which are created by Cas-9 nuclease at a position upstream from a protospacer adjacent motif. The modified genome-editing tool CRISPR/Cas-9 has numerous applications in the various fields, such as biotechnology and medicine. Moreover, it is being studied for cancer management; Human Immunodeficiency virus (HIV), and as a gene therapy for several genetic diseases, including cystic fibrosis; sickle cell disease, and Duchenne muscular dystrophy. However, immunogenicity; off-target effect, and efficient delivery systems withstand against its spread in the clinical applications until introducing an improvement. The aim of this review was to summarize how the various CRISPR systems work; their important medical applications, and their limitations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
16
审稿时长
4 weeks
期刊最新文献
Use of rpoB gene phylogenetic marker-based distinction of abiotic stress tolerant and plant-growth promoting Bacillus paralicheniformis isolates from their closely related Bacillus licheniformis From gut to brain: Deciphering the impact of gut microbiota on neurological health Association of multiple mutations in NS5A and NS5B genes and resistance to direct-acting antivirals in chronically infected Egyptian patients with Hepatitis C virus Genotype 4a Evaluation of the antioxidant and antimicrobial activities of the spent coffee extracts and their applications as natural food preservatives of chicken fillets Evaluation of the antioxidant and antimicrobial activities of the spent coffee extracts and their applications as natural food preservatives of chicken fillets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1