添加甘油玉米淀粉可食用膜的特性及氧化锌纳米颗粒的变化

Ifmalinda Ifmalinda, Siti Azzahra Kurnia, Dinah Cherie
{"title":"添加甘油玉米淀粉可食用膜的特性及氧化锌纳米颗粒的变化","authors":"Ifmalinda Ifmalinda, Siti Azzahra Kurnia, Dinah Cherie","doi":"10.55043/jaast.v7i3.87","DOIUrl":null,"url":null,"abstract":"Plastic is one of the most widely used packaging materials. Plastic is made of chemicals that are highly toxic, and its use has produced a lot of waste that is bad for the environment and difficult to decompose. The global community is becoming more and more aware of the value of high-quality food, particularly when it comes to packaging that is safe for human health and the environment. Edible films can be used as an eco-friendly alternative to plastic food packaging options. As a material for packaging, edible film made of biopolymers has been created. This material can be made from biodegradable components and has qualities akin to those of ordinary plastics. When combined with zinc oxide (ZnO), a piezoelectric ceramic with anti-microbial properties, edible film degrades and decomposes readily. This study sets out to identify the effects of variations in zinc oxide nanoparticle concentration properties of edible films made from corn starch (Zea mays L.) and to establish the optimal zinc oxide nanoparticle concentration. ZnO concentrations ranging from 0% to 3% to 9% to 12% were used. The outcomes demonstrated that a concentration of 12% provided the optimal treatment for the properties of edible film. With the addition of 12% ZnO concentration, the edible film's properties improved the most in this investigation, showing 81.94% water resistance, 1.434 MPa tensile strength, and 38.46% elongation percent. The lowest biodegradability value was found in edible film with a concentration of ZnO 12%, within 14 days. The resistivity, tensile strength, and % elongation of the edible film increase with increasing ZnO content.","PeriodicalId":33922,"journal":{"name":"Journal of Applied Agricultural Science and Technology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of Edible Film from Corn Starch (Zea mays L.) with Additional Glycerol and Variations of Zinc Oxide (ZnO) Nanoparticles\",\"authors\":\"Ifmalinda Ifmalinda, Siti Azzahra Kurnia, Dinah Cherie\",\"doi\":\"10.55043/jaast.v7i3.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plastic is one of the most widely used packaging materials. Plastic is made of chemicals that are highly toxic, and its use has produced a lot of waste that is bad for the environment and difficult to decompose. The global community is becoming more and more aware of the value of high-quality food, particularly when it comes to packaging that is safe for human health and the environment. Edible films can be used as an eco-friendly alternative to plastic food packaging options. As a material for packaging, edible film made of biopolymers has been created. This material can be made from biodegradable components and has qualities akin to those of ordinary plastics. When combined with zinc oxide (ZnO), a piezoelectric ceramic with anti-microbial properties, edible film degrades and decomposes readily. This study sets out to identify the effects of variations in zinc oxide nanoparticle concentration properties of edible films made from corn starch (Zea mays L.) and to establish the optimal zinc oxide nanoparticle concentration. ZnO concentrations ranging from 0% to 3% to 9% to 12% were used. The outcomes demonstrated that a concentration of 12% provided the optimal treatment for the properties of edible film. With the addition of 12% ZnO concentration, the edible film's properties improved the most in this investigation, showing 81.94% water resistance, 1.434 MPa tensile strength, and 38.46% elongation percent. The lowest biodegradability value was found in edible film with a concentration of ZnO 12%, within 14 days. The resistivity, tensile strength, and % elongation of the edible film increase with increasing ZnO content.\",\"PeriodicalId\":33922,\"journal\":{\"name\":\"Journal of Applied Agricultural Science and Technology\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Agricultural Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55043/jaast.v7i3.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Agricultural Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55043/jaast.v7i3.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

塑料是应用最广泛的包装材料之一。塑料是由剧毒的化学物质制成的,它的使用产生了大量对环境有害且难以分解的废物。国际社会越来越意识到高质量食品的价值,特别是在涉及对人类健康和环境安全的包装时。可食用薄膜可以作为塑料食品包装的环保替代品。作为一种包装材料,生物聚合物制成的可食用薄膜已经被创造出来。这种材料可以由可生物降解的成分制成,具有与普通塑料相似的品质。当与氧化锌(ZnO)结合时,具有抗微生物特性的压电陶瓷,可食用薄膜易于降解和分解。本研究旨在确定由玉米淀粉(Zea mays L.)制成的可食用薄膜中氧化锌纳米颗粒浓度变化的影响,并确定最佳氧化锌纳米颗粒浓度。ZnO的浓度范围为0% ~ 3%和9% ~ 12%。结果表明,12%的浓度对食用膜的性能有较好的影响。当ZnO浓度为12%时,可食用薄膜的抗水性提高最多,达到81.94%,抗拉强度为1.434 MPa,伸长率为38.46%。当氧化锌浓度为12%时,可食用薄膜在14天内的生物降解值最低。随着ZnO含量的增加,可食用薄膜的电阻率、抗拉强度和伸长率均有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characteristics of Edible Film from Corn Starch (Zea mays L.) with Additional Glycerol and Variations of Zinc Oxide (ZnO) Nanoparticles
Plastic is one of the most widely used packaging materials. Plastic is made of chemicals that are highly toxic, and its use has produced a lot of waste that is bad for the environment and difficult to decompose. The global community is becoming more and more aware of the value of high-quality food, particularly when it comes to packaging that is safe for human health and the environment. Edible films can be used as an eco-friendly alternative to plastic food packaging options. As a material for packaging, edible film made of biopolymers has been created. This material can be made from biodegradable components and has qualities akin to those of ordinary plastics. When combined with zinc oxide (ZnO), a piezoelectric ceramic with anti-microbial properties, edible film degrades and decomposes readily. This study sets out to identify the effects of variations in zinc oxide nanoparticle concentration properties of edible films made from corn starch (Zea mays L.) and to establish the optimal zinc oxide nanoparticle concentration. ZnO concentrations ranging from 0% to 3% to 9% to 12% were used. The outcomes demonstrated that a concentration of 12% provided the optimal treatment for the properties of edible film. With the addition of 12% ZnO concentration, the edible film's properties improved the most in this investigation, showing 81.94% water resistance, 1.434 MPa tensile strength, and 38.46% elongation percent. The lowest biodegradability value was found in edible film with a concentration of ZnO 12%, within 14 days. The resistivity, tensile strength, and % elongation of the edible film increase with increasing ZnO content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
7 weeks
期刊最新文献
Antibacterial Synergy Detection of Lignin Extract from Oil Palm Empty Fruit Bunches (Opefb) Combined with Amoxicillin Against Staphylococcus Aureus Using The Azdast Method Flood Modelling of Premulung River, Bengawan Solo The Study of Relationship of Soil Physics Health and Micro-Climate Characteristics on Paddy Fields Growth of Cut-Grafting Robusta Coffee Seeds Utilizing Orthotropic and Plagiotropic Rootstocks with Application Bacillus and Pseudomonas Mixture The Application of Botanical Pesticides to Control Fusarium Wilt on Asparagus Beans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1