Ari Sulistyo Rini, Rahmi Dewi, Jasril Jasril, Tessa Marshanda, Yolanda Rati, Yan Soerbakti
{"title":"菠萝皮萃取物绿色法制备的ZnO/Ag纳米复合材料光催化降解亚甲基蓝染料的合成与表征","authors":"Ari Sulistyo Rini, Rahmi Dewi, Jasril Jasril, Tessa Marshanda, Yolanda Rati, Yan Soerbakti","doi":"10.21315/jps2023.34.2.5","DOIUrl":null,"url":null,"abstract":"Photocatalytic is one of the technological developments of renewable materials in overcoming water pollution due to industrial waste treatment. In this study, photocatalytic observations were carried out with a methylene blue (MB) degradation approach using zinc oxide and silver (ZnO/Ag) nanocomposites (NCs) which were enhanced by a new green synthesis in the form of pineapple peel extract (Ananas comosus) as a bio-stabiliser. The amount of Ag was varied by 5%, 10% and 15%. UV-Vis spectroscopy (UV-Vis), X-ray diffrection (XRD) and scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) spectroscopy were analysed to study the optical properties, structure, morphology and composition of the samples. The characterisation results show that the absorption peak occurs in the 359 nm to 368 nm region with a band gap energy of 2.96 eV to 3.00 eV. Based on the XRD pattern, a hexagonal wurtzite structure was obtained with a crystal size of 18.37 nm. The particle morphology shows a flower-like shape with an average diameter of 60 nm. The EDX spectrum confirmed the elemental content of Zn, oxygen (O) and Ag. The photocatalytic activity showed that 10% ZnO/Ag was able to optimally degrade MB (10 ppm) with a reaction rate constant of 0.0091 min−1. Therefore, ZnO/Ag NCs were proven to be able to degrade dyes faster than pure ZnO.","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterisation of ZnO/Ag Nanocomposites Prepared via Green Method Using Pineapple Peel Extract for Photocatalytic Enhancement in Degrading Methylene Blue Dye Solutions\",\"authors\":\"Ari Sulistyo Rini, Rahmi Dewi, Jasril Jasril, Tessa Marshanda, Yolanda Rati, Yan Soerbakti\",\"doi\":\"10.21315/jps2023.34.2.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photocatalytic is one of the technological developments of renewable materials in overcoming water pollution due to industrial waste treatment. In this study, photocatalytic observations were carried out with a methylene blue (MB) degradation approach using zinc oxide and silver (ZnO/Ag) nanocomposites (NCs) which were enhanced by a new green synthesis in the form of pineapple peel extract (Ananas comosus) as a bio-stabiliser. The amount of Ag was varied by 5%, 10% and 15%. UV-Vis spectroscopy (UV-Vis), X-ray diffrection (XRD) and scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) spectroscopy were analysed to study the optical properties, structure, morphology and composition of the samples. The characterisation results show that the absorption peak occurs in the 359 nm to 368 nm region with a band gap energy of 2.96 eV to 3.00 eV. Based on the XRD pattern, a hexagonal wurtzite structure was obtained with a crystal size of 18.37 nm. The particle morphology shows a flower-like shape with an average diameter of 60 nm. The EDX spectrum confirmed the elemental content of Zn, oxygen (O) and Ag. The photocatalytic activity showed that 10% ZnO/Ag was able to optimally degrade MB (10 ppm) with a reaction rate constant of 0.0091 min−1. Therefore, ZnO/Ag NCs were proven to be able to degrade dyes faster than pure ZnO.\",\"PeriodicalId\":16757,\"journal\":{\"name\":\"Journal of Physical Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21315/jps2023.34.2.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21315/jps2023.34.2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Synthesis and Characterisation of ZnO/Ag Nanocomposites Prepared via Green Method Using Pineapple Peel Extract for Photocatalytic Enhancement in Degrading Methylene Blue Dye Solutions
Photocatalytic is one of the technological developments of renewable materials in overcoming water pollution due to industrial waste treatment. In this study, photocatalytic observations were carried out with a methylene blue (MB) degradation approach using zinc oxide and silver (ZnO/Ag) nanocomposites (NCs) which were enhanced by a new green synthesis in the form of pineapple peel extract (Ananas comosus) as a bio-stabiliser. The amount of Ag was varied by 5%, 10% and 15%. UV-Vis spectroscopy (UV-Vis), X-ray diffrection (XRD) and scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) spectroscopy were analysed to study the optical properties, structure, morphology and composition of the samples. The characterisation results show that the absorption peak occurs in the 359 nm to 368 nm region with a band gap energy of 2.96 eV to 3.00 eV. Based on the XRD pattern, a hexagonal wurtzite structure was obtained with a crystal size of 18.37 nm. The particle morphology shows a flower-like shape with an average diameter of 60 nm. The EDX spectrum confirmed the elemental content of Zn, oxygen (O) and Ag. The photocatalytic activity showed that 10% ZnO/Ag was able to optimally degrade MB (10 ppm) with a reaction rate constant of 0.0091 min−1. Therefore, ZnO/Ag NCs were proven to be able to degrade dyes faster than pure ZnO.
期刊介绍:
The aim of the journal is to disseminate latest scientific ideas and findings in the field of physical sciences among scientists in Malaysia and international regions. This journal is devoted to the publication of articles dealing with research works in Chemistry, Physics and Engineering. Review articles will also be considered. Manuscripts must be of scientific value and will be submitted to independent referees for review. Contributions must be written in English and must not have been published elsewhere.