Abdullah Taha Ali, Wan Maryam Wan Ahmad Kamil, Sheng-Chan Wu, Chung-Xian Yang, Hsu-Cheng Hsu, Faisal Rafiq Mahamd Adikan, Ghafour Amouzad Mahdiraji, Fairuz Abdullah
{"title":"光纤包覆ZnO的随机激光发射","authors":"Abdullah Taha Ali, Wan Maryam Wan Ahmad Kamil, Sheng-Chan Wu, Chung-Xian Yang, Hsu-Cheng Hsu, Faisal Rafiq Mahamd Adikan, Ghafour Amouzad Mahdiraji, Fairuz Abdullah","doi":"10.21315/jps2023.34.2.3","DOIUrl":null,"url":null,"abstract":"Random lasing from a solid-state gain medium prepared on photonic crystal fibre (PCF) is observed for the first time. Vertically aligned ZnO microrods were prepared on PCF using a simple technique of chemical bath deposition (CBD). A low lasing threshold of 12.2 mJ/cm2 was observed in sample with longer zinc oxide (ZnO) rod length. The variation in morphology and population density did not affect the lasing threshold significantly. Further investigation of the effect of fiber length revealed that a shorter fiber had a lower threshold and showed quenching of the spontaneous emission revealing better lasing output. Simulations based on the morphology of the gain medium revealed light confinement in the structure, validating the origin of the lasing emission. Overall, this study shows the potential of utilising optical fiber as random lasers with a sustainable solid state gain medium.","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random Laser Emission from Fiber coated ZnO\",\"authors\":\"Abdullah Taha Ali, Wan Maryam Wan Ahmad Kamil, Sheng-Chan Wu, Chung-Xian Yang, Hsu-Cheng Hsu, Faisal Rafiq Mahamd Adikan, Ghafour Amouzad Mahdiraji, Fairuz Abdullah\",\"doi\":\"10.21315/jps2023.34.2.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Random lasing from a solid-state gain medium prepared on photonic crystal fibre (PCF) is observed for the first time. Vertically aligned ZnO microrods were prepared on PCF using a simple technique of chemical bath deposition (CBD). A low lasing threshold of 12.2 mJ/cm2 was observed in sample with longer zinc oxide (ZnO) rod length. The variation in morphology and population density did not affect the lasing threshold significantly. Further investigation of the effect of fiber length revealed that a shorter fiber had a lower threshold and showed quenching of the spontaneous emission revealing better lasing output. Simulations based on the morphology of the gain medium revealed light confinement in the structure, validating the origin of the lasing emission. Overall, this study shows the potential of utilising optical fiber as random lasers with a sustainable solid state gain medium.\",\"PeriodicalId\":16757,\"journal\":{\"name\":\"Journal of Physical Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21315/jps2023.34.2.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21315/jps2023.34.2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Random lasing from a solid-state gain medium prepared on photonic crystal fibre (PCF) is observed for the first time. Vertically aligned ZnO microrods were prepared on PCF using a simple technique of chemical bath deposition (CBD). A low lasing threshold of 12.2 mJ/cm2 was observed in sample with longer zinc oxide (ZnO) rod length. The variation in morphology and population density did not affect the lasing threshold significantly. Further investigation of the effect of fiber length revealed that a shorter fiber had a lower threshold and showed quenching of the spontaneous emission revealing better lasing output. Simulations based on the morphology of the gain medium revealed light confinement in the structure, validating the origin of the lasing emission. Overall, this study shows the potential of utilising optical fiber as random lasers with a sustainable solid state gain medium.
期刊介绍:
The aim of the journal is to disseminate latest scientific ideas and findings in the field of physical sciences among scientists in Malaysia and international regions. This journal is devoted to the publication of articles dealing with research works in Chemistry, Physics and Engineering. Review articles will also be considered. Manuscripts must be of scientific value and will be submitted to independent referees for review. Contributions must be written in English and must not have been published elsewhere.