基于Python的太阳辐照度预测

IF 0.7 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES MAUSAM Pub Date : 2023-10-01 DOI:10.54302/mausam.v74i4.5984
LITING YAN, AO YU, GE ZHANG, JINYE ZHANG
{"title":"基于Python的太阳辐照度预测","authors":"LITING YAN, AO YU, GE ZHANG, JINYE ZHANG","doi":"10.54302/mausam.v74i4.5984","DOIUrl":null,"url":null,"abstract":"The rapid development of modern industrial society has relied heavily on cheap and abundant fossil fuel energy. However, to achieve sustainable development, there is an increasing focus on developing new energy sources such as photovoltaics (PV) and wind energy. In the context of using solar irradiance to generate electricity, predicting the solarpower in advance is crucial for efficient utilization. This paper utilizes the pvlib-python model to predict three types of irradiance in clear sky conditions: POA_DNI, POA_GHI, and POA_DHI. Furthermore, we incorporate aerosol data from pvlib to improve the prediction accuracy.Three sites from BSRN are selected and the predicted data are compared with the observed data to evaluate the model's prediction effectiveness. The result reveals that the model performs best for POA_GHI and the actual cloud cover distribution has a significant impact on the prediction accuracy.","PeriodicalId":18363,"journal":{"name":"MAUSAM","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of solar irradiance based on Python\",\"authors\":\"LITING YAN, AO YU, GE ZHANG, JINYE ZHANG\",\"doi\":\"10.54302/mausam.v74i4.5984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development of modern industrial society has relied heavily on cheap and abundant fossil fuel energy. However, to achieve sustainable development, there is an increasing focus on developing new energy sources such as photovoltaics (PV) and wind energy. In the context of using solar irradiance to generate electricity, predicting the solarpower in advance is crucial for efficient utilization. This paper utilizes the pvlib-python model to predict three types of irradiance in clear sky conditions: POA_DNI, POA_GHI, and POA_DHI. Furthermore, we incorporate aerosol data from pvlib to improve the prediction accuracy.Three sites from BSRN are selected and the predicted data are compared with the observed data to evaluate the model's prediction effectiveness. The result reveals that the model performs best for POA_GHI and the actual cloud cover distribution has a significant impact on the prediction accuracy.\",\"PeriodicalId\":18363,\"journal\":{\"name\":\"MAUSAM\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAUSAM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54302/mausam.v74i4.5984\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAUSAM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54302/mausam.v74i4.5984","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

现代工业社会的快速发展在很大程度上依赖于廉价而丰富的化石燃料能源。然而,为了实现可持续发展,人们越来越重视发展新能源,如光伏和风能。在利用太阳辐照度发电的背景下,提前预测太阳能对于有效利用至关重要。本文利用pvlib-python模型预测了晴空条件下POA_DNI、POA_GHI和POA_DHI三种类型的辐照度。此外,我们还结合了pvlib中的气溶胶数据,以提高预测精度。从BSRN中选择3个站点,将预测数据与观测数据进行比较,评价模型的预测效果。结果表明,该模型对POA_GHI的预测效果最好,实际云量分布对预测精度有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of solar irradiance based on Python
The rapid development of modern industrial society has relied heavily on cheap and abundant fossil fuel energy. However, to achieve sustainable development, there is an increasing focus on developing new energy sources such as photovoltaics (PV) and wind energy. In the context of using solar irradiance to generate electricity, predicting the solarpower in advance is crucial for efficient utilization. This paper utilizes the pvlib-python model to predict three types of irradiance in clear sky conditions: POA_DNI, POA_GHI, and POA_DHI. Furthermore, we incorporate aerosol data from pvlib to improve the prediction accuracy.Three sites from BSRN are selected and the predicted data are compared with the observed data to evaluate the model's prediction effectiveness. The result reveals that the model performs best for POA_GHI and the actual cloud cover distribution has a significant impact on the prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MAUSAM
MAUSAM 地学-气象与大气科学
CiteScore
1.20
自引率
0.00%
发文量
1298
审稿时长
6-12 weeks
期刊介绍: MAUSAM (Formerly Indian Journal of Meteorology, Hydrology & Geophysics), established in January 1950, is the quarterly research journal brought out by the India Meteorological Department (IMD). MAUSAM is a medium for publication of original scientific research work. MAUSAM is a premier scientific research journal published in this part of the world in the fields of Meteorology, Hydrology & Geophysics. The four issues appear in January, April, July & October.
期刊最新文献
Precursors of hazard due to super cyclone AMPHAN for Kolkata, India from surface observations Analysis of long-term trends of rainfall and extreme rainfall events over Andaman & Nicobar and Lakshadweep Islands of India Climate drives of growth, yield and microclimate variability in multistoried coconut plantation in Konkan region of Maharashtra, India Accuracy of cumulonimbus cloud prediction using Rapidly Developing Cumulus Area (RDCA) products at Pattimura Ambon airport Markov Chain analysis of rainfall of Coimbatore
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1