{"title":"基于Python的太阳辐照度预测","authors":"LITING YAN, AO YU, GE ZHANG, JINYE ZHANG","doi":"10.54302/mausam.v74i4.5984","DOIUrl":null,"url":null,"abstract":"The rapid development of modern industrial society has relied heavily on cheap and abundant fossil fuel energy. However, to achieve sustainable development, there is an increasing focus on developing new energy sources such as photovoltaics (PV) and wind energy. In the context of using solar irradiance to generate electricity, predicting the solarpower in advance is crucial for efficient utilization. This paper utilizes the pvlib-python model to predict three types of irradiance in clear sky conditions: POA_DNI, POA_GHI, and POA_DHI. Furthermore, we incorporate aerosol data from pvlib to improve the prediction accuracy.Three sites from BSRN are selected and the predicted data are compared with the observed data to evaluate the model's prediction effectiveness. The result reveals that the model performs best for POA_GHI and the actual cloud cover distribution has a significant impact on the prediction accuracy.","PeriodicalId":18363,"journal":{"name":"MAUSAM","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of solar irradiance based on Python\",\"authors\":\"LITING YAN, AO YU, GE ZHANG, JINYE ZHANG\",\"doi\":\"10.54302/mausam.v74i4.5984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development of modern industrial society has relied heavily on cheap and abundant fossil fuel energy. However, to achieve sustainable development, there is an increasing focus on developing new energy sources such as photovoltaics (PV) and wind energy. In the context of using solar irradiance to generate electricity, predicting the solarpower in advance is crucial for efficient utilization. This paper utilizes the pvlib-python model to predict three types of irradiance in clear sky conditions: POA_DNI, POA_GHI, and POA_DHI. Furthermore, we incorporate aerosol data from pvlib to improve the prediction accuracy.Three sites from BSRN are selected and the predicted data are compared with the observed data to evaluate the model's prediction effectiveness. The result reveals that the model performs best for POA_GHI and the actual cloud cover distribution has a significant impact on the prediction accuracy.\",\"PeriodicalId\":18363,\"journal\":{\"name\":\"MAUSAM\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAUSAM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54302/mausam.v74i4.5984\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAUSAM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54302/mausam.v74i4.5984","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
The rapid development of modern industrial society has relied heavily on cheap and abundant fossil fuel energy. However, to achieve sustainable development, there is an increasing focus on developing new energy sources such as photovoltaics (PV) and wind energy. In the context of using solar irradiance to generate electricity, predicting the solarpower in advance is crucial for efficient utilization. This paper utilizes the pvlib-python model to predict three types of irradiance in clear sky conditions: POA_DNI, POA_GHI, and POA_DHI. Furthermore, we incorporate aerosol data from pvlib to improve the prediction accuracy.Three sites from BSRN are selected and the predicted data are compared with the observed data to evaluate the model's prediction effectiveness. The result reveals that the model performs best for POA_GHI and the actual cloud cover distribution has a significant impact on the prediction accuracy.
期刊介绍:
MAUSAM (Formerly Indian Journal of Meteorology, Hydrology & Geophysics), established in January 1950, is the quarterly research
journal brought out by the India Meteorological Department (IMD). MAUSAM is a medium for publication of original scientific
research work. MAUSAM is a premier scientific research journal published in this part of the world in the fields of Meteorology,
Hydrology & Geophysics. The four issues appear in January, April, July & October.