降水预报模型的新方法及验证

IF 0.7 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES MAUSAM Pub Date : 2023-10-01 DOI:10.54302/mausam.v74i4.4359
KUMARASWAMY KANDUKURI, BHATRACHARYULU N. CH.
{"title":"降水预报模型的新方法及验证","authors":"KUMARASWAMY KANDUKURI, BHATRACHARYULU N. CH.","doi":"10.54302/mausam.v74i4.4359","DOIUrl":null,"url":null,"abstract":"There is a lot of time series data in many realistic sectors with different forecast techniques over the years. However there is no unanimous conclusion on forecast techniques such as individual forecasts Autoregressive, Moving averages, Autoregressive Moving average, Autoregressive Integrated Moving average, Artificial Neural Network, Long Short Term Memory network and Auto-Regressive Conditional Heteroscedasticity / Generalized Autoregressive Conditional Heteroskedasticity and combination of forecast (simple Average of forecasts, Minimum variance method, and Regression method of the combine). The most empirical hydrological time series models do not accurately forecast the weather. This paper focuses on a comparative study of different existing individual and combination forecasts with the proposed Hybrid Stochastic Model (HSM) forecast procedure. For this we consider a hydrological time series data of the Indian subcontinent to test the proposed forecast model. As a whole in comparison to all other traditional model's contributions accuracy, the proposed model performed well, and also we examined the model's dimension reduction approach to choose an optimum number of forecast techniques to be included in the model to yield the best forecasts.","PeriodicalId":18363,"journal":{"name":"MAUSAM","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New method of precipitation forecast model and validation\",\"authors\":\"KUMARASWAMY KANDUKURI, BHATRACHARYULU N. CH.\",\"doi\":\"10.54302/mausam.v74i4.4359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a lot of time series data in many realistic sectors with different forecast techniques over the years. However there is no unanimous conclusion on forecast techniques such as individual forecasts Autoregressive, Moving averages, Autoregressive Moving average, Autoregressive Integrated Moving average, Artificial Neural Network, Long Short Term Memory network and Auto-Regressive Conditional Heteroscedasticity / Generalized Autoregressive Conditional Heteroskedasticity and combination of forecast (simple Average of forecasts, Minimum variance method, and Regression method of the combine). The most empirical hydrological time series models do not accurately forecast the weather. This paper focuses on a comparative study of different existing individual and combination forecasts with the proposed Hybrid Stochastic Model (HSM) forecast procedure. For this we consider a hydrological time series data of the Indian subcontinent to test the proposed forecast model. As a whole in comparison to all other traditional model's contributions accuracy, the proposed model performed well, and also we examined the model's dimension reduction approach to choose an optimum number of forecast techniques to be included in the model to yield the best forecasts.\",\"PeriodicalId\":18363,\"journal\":{\"name\":\"MAUSAM\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAUSAM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54302/mausam.v74i4.4359\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAUSAM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54302/mausam.v74i4.4359","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

多年来,许多现实行业的时间序列数据具有不同的预测技术。然而,对于个别预测、自回归、移动平均、自回归移动平均、自回归综合移动平均、人工神经网络、长短期记忆网络、自回归条件异方差/广义自回归条件异方差、组合预测(预测简单平均法、最小方差法、组合回归法)等预测技术,目前还没有形成一致的结论。大多数经验水文时间序列模型不能准确地预报天气。本文重点对现有的不同个体和组合预测与提出的混合随机模型(HSM)预测程序进行了比较研究。为此,我们考虑了印度次大陆的水文时间序列数据来检验所提出的预测模型。作为一个整体,与所有其他传统模型的贡献精度相比,所提出的模型表现良好,并且我们还检查了模型的降维方法,以选择最优数量的预测技术,包括在模型中,以产生最佳预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New method of precipitation forecast model and validation
There is a lot of time series data in many realistic sectors with different forecast techniques over the years. However there is no unanimous conclusion on forecast techniques such as individual forecasts Autoregressive, Moving averages, Autoregressive Moving average, Autoregressive Integrated Moving average, Artificial Neural Network, Long Short Term Memory network and Auto-Regressive Conditional Heteroscedasticity / Generalized Autoregressive Conditional Heteroskedasticity and combination of forecast (simple Average of forecasts, Minimum variance method, and Regression method of the combine). The most empirical hydrological time series models do not accurately forecast the weather. This paper focuses on a comparative study of different existing individual and combination forecasts with the proposed Hybrid Stochastic Model (HSM) forecast procedure. For this we consider a hydrological time series data of the Indian subcontinent to test the proposed forecast model. As a whole in comparison to all other traditional model's contributions accuracy, the proposed model performed well, and also we examined the model's dimension reduction approach to choose an optimum number of forecast techniques to be included in the model to yield the best forecasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MAUSAM
MAUSAM 地学-气象与大气科学
CiteScore
1.20
自引率
0.00%
发文量
1298
审稿时长
6-12 weeks
期刊介绍: MAUSAM (Formerly Indian Journal of Meteorology, Hydrology & Geophysics), established in January 1950, is the quarterly research journal brought out by the India Meteorological Department (IMD). MAUSAM is a medium for publication of original scientific research work. MAUSAM is a premier scientific research journal published in this part of the world in the fields of Meteorology, Hydrology & Geophysics. The four issues appear in January, April, July & October.
期刊最新文献
Precursors of hazard due to super cyclone AMPHAN for Kolkata, India from surface observations Analysis of long-term trends of rainfall and extreme rainfall events over Andaman & Nicobar and Lakshadweep Islands of India Climate drives of growth, yield and microclimate variability in multistoried coconut plantation in Konkan region of Maharashtra, India Accuracy of cumulonimbus cloud prediction using Rapidly Developing Cumulus Area (RDCA) products at Pattimura Ambon airport Markov Chain analysis of rainfall of Coimbatore
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1