ARIMA模型的概率分析与降雨预报

IF 0.7 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES MAUSAM Pub Date : 2023-10-01 DOI:10.54302/mausam.v74i4.805
CHANDRAN S., SELVAN P., NAMITHA M. R., PRADEEP MISHRA, KUMAR V.
{"title":"ARIMA模型的概率分析与降雨预报","authors":"CHANDRAN S., SELVAN P., NAMITHA M. R., PRADEEP MISHRA, KUMAR V.","doi":"10.54302/mausam.v74i4.805","DOIUrl":null,"url":null,"abstract":"A 34-year rainfall data from 1976 to 2009 of ten sub-basins of the Vaigai River in Tamil Nadu were collected and analysed statistically using various probability distribution functions. The best-fit probability distributions for the annual, monthly and seasonal rainfall for the study area were found using two goodness-of-fit tests. The Box-Jenkins Autoregressive Integrated Moving Average (ARIMA) methodology has been adopted for model identification, diagnostic checking and forecasting the study area's annual rainfall. The best ARIMA models were selected for each sub-basin and the average annual precipitation for 2010, 2015, 2020 and 2025 has been forecasted. The forecasted result compared well with observed dataup to 2020, which indicates the appropriateness of the model.","PeriodicalId":18363,"journal":{"name":"MAUSAM","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probability analysis and rainfall forecasting using ARIMA model\",\"authors\":\"CHANDRAN S., SELVAN P., NAMITHA M. R., PRADEEP MISHRA, KUMAR V.\",\"doi\":\"10.54302/mausam.v74i4.805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 34-year rainfall data from 1976 to 2009 of ten sub-basins of the Vaigai River in Tamil Nadu were collected and analysed statistically using various probability distribution functions. The best-fit probability distributions for the annual, monthly and seasonal rainfall for the study area were found using two goodness-of-fit tests. The Box-Jenkins Autoregressive Integrated Moving Average (ARIMA) methodology has been adopted for model identification, diagnostic checking and forecasting the study area's annual rainfall. The best ARIMA models were selected for each sub-basin and the average annual precipitation for 2010, 2015, 2020 and 2025 has been forecasted. The forecasted result compared well with observed dataup to 2020, which indicates the appropriateness of the model.\",\"PeriodicalId\":18363,\"journal\":{\"name\":\"MAUSAM\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAUSAM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54302/mausam.v74i4.805\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAUSAM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54302/mausam.v74i4.805","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文收集了泰米尔纳德邦Vaigai河10个子流域1976 - 2009年34年的降水资料,并利用各种概率分布函数进行了统计分析。使用两次拟合优度检验找到了研究区域年、月和季节降雨量的最佳拟合概率分布。采用Box-Jenkins自回归综合移动平均(ARIMA)方法进行模型识别、诊断检查和预测研究区年降雨量。选取了各子流域的最佳ARIMA模型,对2010、2015、2020和2025年的年平均降水量进行了预测。预测结果与2020年实测数据吻合较好,表明了模型的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probability analysis and rainfall forecasting using ARIMA model
A 34-year rainfall data from 1976 to 2009 of ten sub-basins of the Vaigai River in Tamil Nadu were collected and analysed statistically using various probability distribution functions. The best-fit probability distributions for the annual, monthly and seasonal rainfall for the study area were found using two goodness-of-fit tests. The Box-Jenkins Autoregressive Integrated Moving Average (ARIMA) methodology has been adopted for model identification, diagnostic checking and forecasting the study area's annual rainfall. The best ARIMA models were selected for each sub-basin and the average annual precipitation for 2010, 2015, 2020 and 2025 has been forecasted. The forecasted result compared well with observed dataup to 2020, which indicates the appropriateness of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MAUSAM
MAUSAM 地学-气象与大气科学
CiteScore
1.20
自引率
0.00%
发文量
1298
审稿时长
6-12 weeks
期刊介绍: MAUSAM (Formerly Indian Journal of Meteorology, Hydrology & Geophysics), established in January 1950, is the quarterly research journal brought out by the India Meteorological Department (IMD). MAUSAM is a medium for publication of original scientific research work. MAUSAM is a premier scientific research journal published in this part of the world in the fields of Meteorology, Hydrology & Geophysics. The four issues appear in January, April, July & October.
期刊最新文献
Precursors of hazard due to super cyclone AMPHAN for Kolkata, India from surface observations Analysis of long-term trends of rainfall and extreme rainfall events over Andaman & Nicobar and Lakshadweep Islands of India Climate drives of growth, yield and microclimate variability in multistoried coconut plantation in Konkan region of Maharashtra, India Accuracy of cumulonimbus cloud prediction using Rapidly Developing Cumulus Area (RDCA) products at Pattimura Ambon airport Markov Chain analysis of rainfall of Coimbatore
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1