用于酒店评论阿拉伯语方面类别检测的多标签学习增强方法

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computational Intelligence Pub Date : 2023-11-14 DOI:10.1111/coin.12609
Asma Ameur, Sana Hamdi, Sadok Ben Yahia
{"title":"用于酒店评论阿拉伯语方面类别检测的多标签学习增强方法","authors":"Asma Ameur,&nbsp;Sana Hamdi,&nbsp;Sadok Ben Yahia","doi":"10.1111/coin.12609","DOIUrl":null,"url":null,"abstract":"<p>In many fields, like aspect category detection (ACD) in aspect-based sentiment analysis, it is necessary to label each instance with more than one label at the same time. This study tackles the multilabel classification problem in the ACD task for the Arabic language. For this purpose, we used Arabic hotel reviews from the SemEval-2016 dataset, comprising 13,113 annotated tuples provided for training (10,509) and testing (2,604). To extract valuable information, we first propose specific data preprocessing. Then, we suggest using the dynamic weighted loss function and a data augmentation method to fix the problem with this dataset's imbalance. Using two possible approaches, we develop new ways to find different categories of things in a review sentence. The first is based on classifier chains using machine learning models. The second is based on transfer learning using pretrained AraBERT fine-tuning for contextual representation. Our findings show that both approaches outperformed the related works for ACD on the Arabic SemEval-2016. Moreover, we observed that AraBERT fine-tuning performed much better and achieved a promising <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>F</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {F}_1 $$</annotation>\n </semantics></math>-score of <math>\n <semantics>\n <mrow>\n <mn>68</mn>\n <mo>.</mo>\n <mn>02</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$$ 68.02\\% $$</annotation>\n </semantics></math>.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced approach of multilabel learning for the Arabic aspect category detection of the hotel reviews\",\"authors\":\"Asma Ameur,&nbsp;Sana Hamdi,&nbsp;Sadok Ben Yahia\",\"doi\":\"10.1111/coin.12609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In many fields, like aspect category detection (ACD) in aspect-based sentiment analysis, it is necessary to label each instance with more than one label at the same time. This study tackles the multilabel classification problem in the ACD task for the Arabic language. For this purpose, we used Arabic hotel reviews from the SemEval-2016 dataset, comprising 13,113 annotated tuples provided for training (10,509) and testing (2,604). To extract valuable information, we first propose specific data preprocessing. Then, we suggest using the dynamic weighted loss function and a data augmentation method to fix the problem with this dataset's imbalance. Using two possible approaches, we develop new ways to find different categories of things in a review sentence. The first is based on classifier chains using machine learning models. The second is based on transfer learning using pretrained AraBERT fine-tuning for contextual representation. Our findings show that both approaches outperformed the related works for ACD on the Arabic SemEval-2016. Moreover, we observed that AraBERT fine-tuning performed much better and achieved a promising <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {F}_1 $$</annotation>\\n </semantics></math>-score of <math>\\n <semantics>\\n <mrow>\\n <mn>68</mn>\\n <mo>.</mo>\\n <mn>02</mn>\\n <mo>%</mo>\\n </mrow>\\n <annotation>$$ 68.02\\\\% $$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.12609\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12609","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在许多领域,如基于方面的情感分析中的方面类别检测(ACD),有必要同时为每个实例标注一个以上的标签。本研究探讨了阿拉伯语 ACD 任务中的多标签分类问题。为此,我们使用了 SemEval-2016 数据集中的阿拉伯语酒店评论,其中包括 13,113 个注释图元,用于训练(10,509 个)和测试(2,604 个)。为了提取有价值的信息,我们首先提出了具体的数据预处理建议。然后,我们建议使用动态加权损失函数和数据增强方法来解决该数据集的不平衡问题。利用两种可能的方法,我们开发出了在评论句子中查找不同类别事物的新方法。第一种方法基于使用机器学习模型的分类器链。第二种方法基于使用预训练 AraBERT 微调上下文表征的迁移学习。我们的研究结果表明,在阿拉伯语 SemEval-2016 上,这两种方法在 ACD 方面的表现都优于相关作品。此外,我们还观察到,AraBERT 微调的表现要好得多,并取得了令人鼓舞的 F 1 $$ {F}_1 $$ -score 68 . 02 % $$ 68.02\% $$ .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced approach of multilabel learning for the Arabic aspect category detection of the hotel reviews

In many fields, like aspect category detection (ACD) in aspect-based sentiment analysis, it is necessary to label each instance with more than one label at the same time. This study tackles the multilabel classification problem in the ACD task for the Arabic language. For this purpose, we used Arabic hotel reviews from the SemEval-2016 dataset, comprising 13,113 annotated tuples provided for training (10,509) and testing (2,604). To extract valuable information, we first propose specific data preprocessing. Then, we suggest using the dynamic weighted loss function and a data augmentation method to fix the problem with this dataset's imbalance. Using two possible approaches, we develop new ways to find different categories of things in a review sentence. The first is based on classifier chains using machine learning models. The second is based on transfer learning using pretrained AraBERT fine-tuning for contextual representation. Our findings show that both approaches outperformed the related works for ACD on the Arabic SemEval-2016. Moreover, we observed that AraBERT fine-tuning performed much better and achieved a promising F 1 $$ {F}_1 $$ -score of 68 . 02 % $$ 68.02\% $$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
期刊最新文献
SDKT: Similar Domain Knowledge Transfer for Multivariate Time Series Classification Tasks AgriFusion: A Low-Carbon Sustainable Computing Approach for Precision Agriculture Through Probabilistic Ensemble Crop Recommendation Issue Information Comprehensive analysis of feature-algorithm interactions for fall detection across age groups via machine learning An Efficient and Robust 3D Medical Image Classification Approach Based on 3D CNN, Time-Distributed 2D CNN-BLSTM Models, and mRMR Feature Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1