Wanqing Su, Xiguang CAO, Chunwang Ma, Yuting WANG, Guoqiang ZHANG
{"title":"千瓦激光驱动重离子加速中的多层现象","authors":"Wanqing Su, Xiguang CAO, Chunwang Ma, Yuting WANG, Guoqiang ZHANG","doi":"10.1088/2058-6272/ad0c97","DOIUrl":null,"url":null,"abstract":"Abstract Laser-accelerated high-flux-intensity heavy-ion beams are of importance for new-type accelerators. A particle-in-cell program (Smilei) is employed to simulate the entire process of SEL-100 PW laser-accelerated heavy particles using different nanoscale short targets with thickness of 100 nm Cr, Fe, Ag, Ta, Au, Pb, Th, and U, as well as thickness of 200 nm Al and Ca. An obvious stratification is observed in the simulation. The layering phenomenon is a hybrid acceleration mechanism reflecting Target Normal Sheath Acceleration and Radiation Pressure Acceleration, and this phenomenon is understood from the simulated energy spectrum, ionization, and spatial electric field distribution. According to the stratification, it is suggested that high quality of heavy-ion beams could be expected for fusion reactions to synthesize superheavy nuclei. Two plasma clusters in the stratification are observed simultaneously, which suggest new techniques for plasma experiments, as well as thinner metal targets in precision machining process.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-layer phenomena in petawatt laser-driven acceleration of heavy ions\",\"authors\":\"Wanqing Su, Xiguang CAO, Chunwang Ma, Yuting WANG, Guoqiang ZHANG\",\"doi\":\"10.1088/2058-6272/ad0c97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Laser-accelerated high-flux-intensity heavy-ion beams are of importance for new-type accelerators. A particle-in-cell program (Smilei) is employed to simulate the entire process of SEL-100 PW laser-accelerated heavy particles using different nanoscale short targets with thickness of 100 nm Cr, Fe, Ag, Ta, Au, Pb, Th, and U, as well as thickness of 200 nm Al and Ca. An obvious stratification is observed in the simulation. The layering phenomenon is a hybrid acceleration mechanism reflecting Target Normal Sheath Acceleration and Radiation Pressure Acceleration, and this phenomenon is understood from the simulated energy spectrum, ionization, and spatial electric field distribution. According to the stratification, it is suggested that high quality of heavy-ion beams could be expected for fusion reactions to synthesize superheavy nuclei. Two plasma clusters in the stratification are observed simultaneously, which suggest new techniques for plasma experiments, as well as thinner metal targets in precision machining process.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-6272/ad0c97\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2058-6272/ad0c97","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-layer phenomena in petawatt laser-driven acceleration of heavy ions
Abstract Laser-accelerated high-flux-intensity heavy-ion beams are of importance for new-type accelerators. A particle-in-cell program (Smilei) is employed to simulate the entire process of SEL-100 PW laser-accelerated heavy particles using different nanoscale short targets with thickness of 100 nm Cr, Fe, Ag, Ta, Au, Pb, Th, and U, as well as thickness of 200 nm Al and Ca. An obvious stratification is observed in the simulation. The layering phenomenon is a hybrid acceleration mechanism reflecting Target Normal Sheath Acceleration and Radiation Pressure Acceleration, and this phenomenon is understood from the simulated energy spectrum, ionization, and spatial electric field distribution. According to the stratification, it is suggested that high quality of heavy-ion beams could be expected for fusion reactions to synthesize superheavy nuclei. Two plasma clusters in the stratification are observed simultaneously, which suggest new techniques for plasma experiments, as well as thinner metal targets in precision machining process.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.