用神经网络表征异常点

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY EPL Pub Date : 2023-11-14 DOI:10.1209/0295-5075/ad0c6f
Md Afsar Reja, Awadhesh Narayan
{"title":"用神经网络表征异常点","authors":"Md Afsar Reja, Awadhesh Narayan","doi":"10.1209/0295-5075/ad0c6f","DOIUrl":null,"url":null,"abstract":"Abstract One of the key features of non-Hermitian systems is the occurrence of exceptional points (EPs), spectral degeneracies where the eigenvalues and eigenvectors merge. In this work, we propose applying neural networks to characterize EPs by introducing a new feature -- summed phase rigidity (SPR). We consider different models with varying degrees of complexity to illustrate our approach, and show how to predict EPs for two-site and four-site gain and loss models. Further, we demonstrate an accurate EP prediction in the paradigmatic Hatano-Nelson model for a variable number of sites. Remarkably, we show how SPR enables a prediction of EPs of orders completely unseen by the training data. Our method can be useful to characterize EPs in an automated manner using machine learning approaches.","PeriodicalId":11738,"journal":{"name":"EPL","volume":"8 6","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterizing exceptional points using neural networks\",\"authors\":\"Md Afsar Reja, Awadhesh Narayan\",\"doi\":\"10.1209/0295-5075/ad0c6f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract One of the key features of non-Hermitian systems is the occurrence of exceptional points (EPs), spectral degeneracies where the eigenvalues and eigenvectors merge. In this work, we propose applying neural networks to characterize EPs by introducing a new feature -- summed phase rigidity (SPR). We consider different models with varying degrees of complexity to illustrate our approach, and show how to predict EPs for two-site and four-site gain and loss models. Further, we demonstrate an accurate EP prediction in the paradigmatic Hatano-Nelson model for a variable number of sites. Remarkably, we show how SPR enables a prediction of EPs of orders completely unseen by the training data. Our method can be useful to characterize EPs in an automated manner using machine learning approaches.\",\"PeriodicalId\":11738,\"journal\":{\"name\":\"EPL\",\"volume\":\"8 6\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/ad0c6f\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad0c6f","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要非厄米系统的一个重要特征是在特征值和特征向量合并处存在异常点(EPs),即谱简并。在这项工作中,我们建议应用神经网络通过引入一个新的特征-总相刚度(SPR)来表征EPs。我们考虑了不同复杂程度的不同模型来说明我们的方法,并展示了如何预测两位点和四位点损益模型的EPs。此外,我们证明了典型的Hatano-Nelson模型对可变站点数量的EP预测是准确的。值得注意的是,我们展示了SPR如何能够预测训练数据完全看不到的订单EPs。我们的方法可以用于使用机器学习方法以自动化的方式表征EPs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterizing exceptional points using neural networks
Abstract One of the key features of non-Hermitian systems is the occurrence of exceptional points (EPs), spectral degeneracies where the eigenvalues and eigenvectors merge. In this work, we propose applying neural networks to characterize EPs by introducing a new feature -- summed phase rigidity (SPR). We consider different models with varying degrees of complexity to illustrate our approach, and show how to predict EPs for two-site and four-site gain and loss models. Further, we demonstrate an accurate EP prediction in the paradigmatic Hatano-Nelson model for a variable number of sites. Remarkably, we show how SPR enables a prediction of EPs of orders completely unseen by the training data. Our method can be useful to characterize EPs in an automated manner using machine learning approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPL
EPL 物理-物理:综合
CiteScore
3.30
自引率
5.60%
发文量
332
审稿时长
1.9 months
期刊介绍: General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology. Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate). EPL also publishes Comments on Letters previously published in the Journal.
期刊最新文献
Tunable quantum transport in topological semimetal candidates LaxSr1-xMnSb2 Non-magnetic layers with a single symmetry-protected Dirac cone: Which additional dispersions must appear? Total free-free Gaunt factors prediction using machine learning models Prospects for the use of plasmonic vortices to control nanosystems “Causometry” of processes in arbitrary dynamical systems: Three levels of directional coupling quantifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1