Vahram Stepanyan, Stefan Schuet, Kalmanje Krishnakumar
{"title":"数据与推理结构的最优业务迁移","authors":"Vahram Stepanyan, Stefan Schuet, Kalmanje Krishnakumar","doi":"10.2514/1.i011120","DOIUrl":null,"url":null,"abstract":"In this paper we consider migration problem for Data and Reasoning Fabric (DRF)-enabled airspace operations assuming a fixed cloud/edge infrastructure with allocated computing, storage, and power resources, where cloud/edge servers and communication stations are in a wired connected network, while vehicles use a wireless network for communication. The objective is to automatically select the best location for the requested service execution, which achieves minimum cost while satisfying the user quality of service (QoS) and available resources constraints. To this end, estimates of the response time, consumed energy, and total cost are defined for each potential compute location. A mixed-integer linear program is then formulated and solved to identify optimal compute locations given QoS constraints and network infrastructure limitations, with worst-case vehicle positioning. The approach is applied to trajectory replanning use case to avoid a collision with an emergency vehicle in real time.","PeriodicalId":50260,"journal":{"name":"Journal of Aerospace Information Systems","volume":"35 ","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Service Migration for Data and Reasoning Fabric\",\"authors\":\"Vahram Stepanyan, Stefan Schuet, Kalmanje Krishnakumar\",\"doi\":\"10.2514/1.i011120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider migration problem for Data and Reasoning Fabric (DRF)-enabled airspace operations assuming a fixed cloud/edge infrastructure with allocated computing, storage, and power resources, where cloud/edge servers and communication stations are in a wired connected network, while vehicles use a wireless network for communication. The objective is to automatically select the best location for the requested service execution, which achieves minimum cost while satisfying the user quality of service (QoS) and available resources constraints. To this end, estimates of the response time, consumed energy, and total cost are defined for each potential compute location. A mixed-integer linear program is then formulated and solved to identify optimal compute locations given QoS constraints and network infrastructure limitations, with worst-case vehicle positioning. The approach is applied to trajectory replanning use case to avoid a collision with an emergency vehicle in real time.\",\"PeriodicalId\":50260,\"journal\":{\"name\":\"Journal of Aerospace Information Systems\",\"volume\":\"35 \",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerospace Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.i011120\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.i011120","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Optimal Service Migration for Data and Reasoning Fabric
In this paper we consider migration problem for Data and Reasoning Fabric (DRF)-enabled airspace operations assuming a fixed cloud/edge infrastructure with allocated computing, storage, and power resources, where cloud/edge servers and communication stations are in a wired connected network, while vehicles use a wireless network for communication. The objective is to automatically select the best location for the requested service execution, which achieves minimum cost while satisfying the user quality of service (QoS) and available resources constraints. To this end, estimates of the response time, consumed energy, and total cost are defined for each potential compute location. A mixed-integer linear program is then formulated and solved to identify optimal compute locations given QoS constraints and network infrastructure limitations, with worst-case vehicle positioning. The approach is applied to trajectory replanning use case to avoid a collision with an emergency vehicle in real time.
期刊介绍:
This Journal is devoted to the dissemination of original archival research papers describing new theoretical developments, novel applications, and case studies regarding advances in aerospace computing, information, and networks and communication systems that address aerospace-specific issues. Issues related to signal processing, electromagnetics, antenna theory, and the basic networking hardware transmission technologies of a network are not within the scope of this journal. Topics include aerospace systems and software engineering; verification and validation of embedded systems; the field known as ‘big data,’ data analytics, machine learning, and knowledge management for aerospace systems; human-automation interaction and systems health management for aerospace systems. Applications of autonomous systems, systems engineering principles, and safety and mission assurance are of particular interest. The Journal also features Technical Notes that discuss particular technical innovations or applications in the topics described above. Papers are also sought that rigorously review the results of recent research developments. In addition to original research papers and reviews, the journal publishes articles that review books, conferences, social media, and new educational modes applicable to the scope of the Journal.