Sunil Kumar Maurya, Ksh. Newton Singh, Megandhren Govender, Ghulam Mustafa, Saibal Ray
{"title":"f(Q)引力理论中引力解耦对GW190814和其他自束缚奇异星次级分量质量和半径约束的影响","authors":"Sunil Kumar Maurya, Ksh. Newton Singh, Megandhren Govender, Ghulam Mustafa, Saibal Ray","doi":"10.3847/1538-4365/ad0154","DOIUrl":null,"url":null,"abstract":"Abstract Inspired by the conundrum of the gravitational event GW190814, which brings to light the coalescence of a 23 M ⊙ black hole with a yet-to-be-determined secondary component, we look to modeling compact objects within the framework of <?CDATA $f({ \\mathcal Q })$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"italic\"></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> gravity by employing the method of gravitational decoupling. We impose a quadratic equation of state (EOS) for the interior matter distribution, which in the appropriate limit reduces to the MIT bag model. The governing field equations arising from gravitational decoupling bifurcate into the <?CDATA $\\rho ={\\theta }_{0}^{0}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>ρ</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>θ</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> and <?CDATA ${p}_{r}={\\theta }_{1}^{1}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mi>p</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>r</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>θ</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> sectors, leading to two distinct classes of solutions. Both families of solutions are subjected to rigorous tests, qualifying them to describe a plethora of compact objects, including neutron stars, strange stars, and the possible progenitor of the secondary component of GW190814. Using observational data of mass–radius relations for compact objects LMC X-4, Cen X-3, PSR J1614–2230, and PSR J0740+6620, we show that it is possible to generate stellar masses and radii beyond 2.0 M ⊙ for neutron stars. Our findings reveal that the most suitable and versatile model in this framework is the quadratic EOS, which accounts for a range of low-mass stars and typical stellar candidates describing the secondary component of GW190814.","PeriodicalId":8588,"journal":{"name":"Astrophysical Journal Supplement Series","volume":"85 5","pages":"0"},"PeriodicalIF":8.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Effect of Gravitational Decoupling on Constraining the Mass and Radius for the Secondary Component of GW190814 and Other Self-bound Strange Stars in f(Q) Gravity Theory\",\"authors\":\"Sunil Kumar Maurya, Ksh. Newton Singh, Megandhren Govender, Ghulam Mustafa, Saibal Ray\",\"doi\":\"10.3847/1538-4365/ad0154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Inspired by the conundrum of the gravitational event GW190814, which brings to light the coalescence of a 23 M ⊙ black hole with a yet-to-be-determined secondary component, we look to modeling compact objects within the framework of <?CDATA $f({ \\\\mathcal Q })$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>f</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi mathvariant=\\\"italic\\\"></mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> gravity by employing the method of gravitational decoupling. We impose a quadratic equation of state (EOS) for the interior matter distribution, which in the appropriate limit reduces to the MIT bag model. The governing field equations arising from gravitational decoupling bifurcate into the <?CDATA $\\\\rho ={\\\\theta }_{0}^{0}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>ρ</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>θ</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> and <?CDATA ${p}_{r}={\\\\theta }_{1}^{1}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mrow> <mml:mi>p</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>r</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>θ</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> sectors, leading to two distinct classes of solutions. Both families of solutions are subjected to rigorous tests, qualifying them to describe a plethora of compact objects, including neutron stars, strange stars, and the possible progenitor of the secondary component of GW190814. Using observational data of mass–radius relations for compact objects LMC X-4, Cen X-3, PSR J1614–2230, and PSR J0740+6620, we show that it is possible to generate stellar masses and radii beyond 2.0 M ⊙ for neutron stars. Our findings reveal that the most suitable and versatile model in this framework is the quadratic EOS, which accounts for a range of low-mass stars and typical stellar candidates describing the secondary component of GW190814.\",\"PeriodicalId\":8588,\"journal\":{\"name\":\"Astrophysical Journal Supplement Series\",\"volume\":\"85 5\",\"pages\":\"0\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysical Journal Supplement Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4365/ad0154\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4365/ad0154","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The Effect of Gravitational Decoupling on Constraining the Mass and Radius for the Secondary Component of GW190814 and Other Self-bound Strange Stars in f(Q) Gravity Theory
Abstract Inspired by the conundrum of the gravitational event GW190814, which brings to light the coalescence of a 23 M ⊙ black hole with a yet-to-be-determined secondary component, we look to modeling compact objects within the framework of f() gravity by employing the method of gravitational decoupling. We impose a quadratic equation of state (EOS) for the interior matter distribution, which in the appropriate limit reduces to the MIT bag model. The governing field equations arising from gravitational decoupling bifurcate into the ρ=θ00 and pr=θ11 sectors, leading to two distinct classes of solutions. Both families of solutions are subjected to rigorous tests, qualifying them to describe a plethora of compact objects, including neutron stars, strange stars, and the possible progenitor of the secondary component of GW190814. Using observational data of mass–radius relations for compact objects LMC X-4, Cen X-3, PSR J1614–2230, and PSR J0740+6620, we show that it is possible to generate stellar masses and radii beyond 2.0 M ⊙ for neutron stars. Our findings reveal that the most suitable and versatile model in this framework is the quadratic EOS, which accounts for a range of low-mass stars and typical stellar candidates describing the secondary component of GW190814.
期刊介绍:
The Astrophysical Journal Supplement (ApJS) serves as an open-access journal that publishes significant articles featuring extensive data or calculations in the field of astrophysics. It also facilitates Special Issues, presenting thematically related papers simultaneously in a single volume.