Ahmed A. Abdelmoneim, Andre Daccache, Roula Khadra
{"title":"OptGate:一种设计和分析传统和自补偿门控管道系统性能的新工具","authors":"Ahmed A. Abdelmoneim, Andre Daccache, Roula Khadra","doi":"10.1061/jidedh.ireng-10100","DOIUrl":null,"url":null,"abstract":"Surface irrigation is still by far the most common method adopted worldwide. For many developing countries, shifting to modern pressurized irrigation is hampered by system and energy costs. Gated pipes are an improvement on furrow irrigation. They offer an affordable modernization option for traditional surface systems. Designed to operate at low pressure, gated pipes have the potential to reduce conveyance losses, improve application uniformity, and minimize runoff, which is often responsible for spreading waterborne diseases and lowering water quality. However, very little pertinent data are available on their performance. In this paper, a new model (OptGate) for the design and performance analysis of self-compensated (SC) and conventional rectangular (CG) gated pipes is described and field validated. OptGate proved its reliability in simulating the discharges along the gated pipe with RMSE = 0.29 and 0.119 m3/h for CG and SC, respectively, under a range of streaming head pressures ranging from 2 to 10 m with a 2-m step. The proposed model can provide users with the ability to predict system performance under different pressures, spacings, gate shapes and behaviors, pipe diameters, and land topography scenarios.","PeriodicalId":16260,"journal":{"name":"Journal of Irrigation and Drainage Engineering-asce","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OptGate: A New Tool to Design and Analyze the Performance of Conventional and Self-Compensating Gated Pipe Systems\",\"authors\":\"Ahmed A. Abdelmoneim, Andre Daccache, Roula Khadra\",\"doi\":\"10.1061/jidedh.ireng-10100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface irrigation is still by far the most common method adopted worldwide. For many developing countries, shifting to modern pressurized irrigation is hampered by system and energy costs. Gated pipes are an improvement on furrow irrigation. They offer an affordable modernization option for traditional surface systems. Designed to operate at low pressure, gated pipes have the potential to reduce conveyance losses, improve application uniformity, and minimize runoff, which is often responsible for spreading waterborne diseases and lowering water quality. However, very little pertinent data are available on their performance. In this paper, a new model (OptGate) for the design and performance analysis of self-compensated (SC) and conventional rectangular (CG) gated pipes is described and field validated. OptGate proved its reliability in simulating the discharges along the gated pipe with RMSE = 0.29 and 0.119 m3/h for CG and SC, respectively, under a range of streaming head pressures ranging from 2 to 10 m with a 2-m step. The proposed model can provide users with the ability to predict system performance under different pressures, spacings, gate shapes and behaviors, pipe diameters, and land topography scenarios.\",\"PeriodicalId\":16260,\"journal\":{\"name\":\"Journal of Irrigation and Drainage Engineering-asce\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Irrigation and Drainage Engineering-asce\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1061/jidedh.ireng-10100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Irrigation and Drainage Engineering-asce","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/jidedh.ireng-10100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
OptGate: A New Tool to Design and Analyze the Performance of Conventional and Self-Compensating Gated Pipe Systems
Surface irrigation is still by far the most common method adopted worldwide. For many developing countries, shifting to modern pressurized irrigation is hampered by system and energy costs. Gated pipes are an improvement on furrow irrigation. They offer an affordable modernization option for traditional surface systems. Designed to operate at low pressure, gated pipes have the potential to reduce conveyance losses, improve application uniformity, and minimize runoff, which is often responsible for spreading waterborne diseases and lowering water quality. However, very little pertinent data are available on their performance. In this paper, a new model (OptGate) for the design and performance analysis of self-compensated (SC) and conventional rectangular (CG) gated pipes is described and field validated. OptGate proved its reliability in simulating the discharges along the gated pipe with RMSE = 0.29 and 0.119 m3/h for CG and SC, respectively, under a range of streaming head pressures ranging from 2 to 10 m with a 2-m step. The proposed model can provide users with the ability to predict system performance under different pressures, spacings, gate shapes and behaviors, pipe diameters, and land topography scenarios.