首页 > 最新文献

Journal of Irrigation and Drainage Engineering-asce最新文献

英文 中文
Discussion of “Effect of Geonet on Scour Downstream of Horizontal Jets” “Geonet对水平射流下游冲刷的影响”的探讨
Pub Date : 2023-11-01 DOI: 10.1061/jidedh.ireng-10118
Li Yao, Jianbei Gu, Xiaoming Zhu, Shiping Ruan, Hao Chen
{"title":"Discussion of “Effect of Geonet on Scour Downstream of Horizontal Jets”","authors":"Li Yao, Jianbei Gu, Xiaoming Zhu, Shiping Ruan, Hao Chen","doi":"10.1061/jidedh.ireng-10118","DOIUrl":"https://doi.org/10.1061/jidedh.ireng-10118","url":null,"abstract":"","PeriodicalId":16260,"journal":{"name":"Journal of Irrigation and Drainage Engineering-asce","volume":"119 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134957264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Downstream Channel Width on Flow Features in a T-Shaped Open-Channel Confluence 下游河道宽度对t形明渠汇合处水流特征的影响
Pub Date : 2023-11-01 DOI: 10.1061/jidedh.ireng-10139
T. Jin, P. X. Ramos, E. Mignot, N. Riviere, T. De Mulder
Open-channel confluences are important junctions in natural and human-made channel networks. Different controls of the confluence hydrodynamics have already been studied intensively, often in schematized geometrical configurations. The T-shaped planform with branches having rectangular cross-sections of equal width is a popular geometry in lab experiments and numerical modeling. However, limited research has been conducted concerning the influence on the flow features of widening or narrowing the downstream branch in such a confluence. Therefore, four geometrical cases with a different downstream channel width were studied with large eddy simulations, while keeping the tributary-dominant discharge ratio, the width of the upstream branches, and the tailwater depth constant. The effect of increasing the downstream-to-upstream branch width ratio was analyzed with regard to the water surface shape, the stagnation zone location, the tributary inflow angles at the interface with the junction, the separation zone dimensions, the flow acceleration toward the vena contracta, the secondary flow patterns and intensity, the turbulent kinetic energy in the shear layers, the bed shear stresses and the backwater effects in the upstream branches. When comparing the numerically predicted upstream-to-downstream water depth ratios with those predicted by the single analytical model applicable to confluences with unequal channel widths, it is found that both models capture the reduction of the upstream-to-downstream water depth ratios when widening the downstream branch, but benchmark cases show that the numerical model predicts the correct relative magnitude of the water depth ratios in the main channel and the tributary channel, contrary to the analytical model.
明渠汇合处是自然水道网和人工水道网的重要枢纽。汇流流体力学的不同控制已经得到了深入的研究,通常是在示意图的几何构型中。具有等宽矩形截面分支的t形平台是实验室实验和数值模拟中常用的几何形式。然而,对于该合流中加宽或缩小下游分支对水流特征的影响,研究有限。因此,在保持支流优势流量比、上游支流宽度和尾水深度不变的情况下,采用大涡模拟方法研究了4种不同下游河道宽度的几何情况。从水面形状、滞止区位置、支流入流角、分离带尺寸、流向收缩静脉加速、二次流形态和强度、剪切层湍流动能、床层剪切应力和上游分支回水效应等方面分析了增加上下游分支宽度比的影响。将河道宽度不等的汇合处的上下游水深比数值预测结果与单一解析模型预测结果进行比较,发现两种模型都能捕捉到下游支流加宽时上下游水深比的减小,但基准算例表明,数值模型预测的主支流和支流的水深比相对大小是正确的。与分析模型相反。
{"title":"Influence of Downstream Channel Width on Flow Features in a T-Shaped Open-Channel Confluence","authors":"T. Jin, P. X. Ramos, E. Mignot, N. Riviere, T. De Mulder","doi":"10.1061/jidedh.ireng-10139","DOIUrl":"https://doi.org/10.1061/jidedh.ireng-10139","url":null,"abstract":"Open-channel confluences are important junctions in natural and human-made channel networks. Different controls of the confluence hydrodynamics have already been studied intensively, often in schematized geometrical configurations. The T-shaped planform with branches having rectangular cross-sections of equal width is a popular geometry in lab experiments and numerical modeling. However, limited research has been conducted concerning the influence on the flow features of widening or narrowing the downstream branch in such a confluence. Therefore, four geometrical cases with a different downstream channel width were studied with large eddy simulations, while keeping the tributary-dominant discharge ratio, the width of the upstream branches, and the tailwater depth constant. The effect of increasing the downstream-to-upstream branch width ratio was analyzed with regard to the water surface shape, the stagnation zone location, the tributary inflow angles at the interface with the junction, the separation zone dimensions, the flow acceleration toward the vena contracta, the secondary flow patterns and intensity, the turbulent kinetic energy in the shear layers, the bed shear stresses and the backwater effects in the upstream branches. When comparing the numerically predicted upstream-to-downstream water depth ratios with those predicted by the single analytical model applicable to confluences with unequal channel widths, it is found that both models capture the reduction of the upstream-to-downstream water depth ratios when widening the downstream branch, but benchmark cases show that the numerical model predicts the correct relative magnitude of the water depth ratios in the main channel and the tributary channel, contrary to the analytical model.","PeriodicalId":16260,"journal":{"name":"Journal of Irrigation and Drainage Engineering-asce","volume":"86 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134957396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OptGate: A New Tool to Design and Analyze the Performance of Conventional and Self-Compensating Gated Pipe Systems OptGate:一种设计和分析传统和自补偿门控管道系统性能的新工具
Pub Date : 2023-11-01 DOI: 10.1061/jidedh.ireng-10100
Ahmed A. Abdelmoneim, Andre Daccache, Roula Khadra
Surface irrigation is still by far the most common method adopted worldwide. For many developing countries, shifting to modern pressurized irrigation is hampered by system and energy costs. Gated pipes are an improvement on furrow irrigation. They offer an affordable modernization option for traditional surface systems. Designed to operate at low pressure, gated pipes have the potential to reduce conveyance losses, improve application uniformity, and minimize runoff, which is often responsible for spreading waterborne diseases and lowering water quality. However, very little pertinent data are available on their performance. In this paper, a new model (OptGate) for the design and performance analysis of self-compensated (SC) and conventional rectangular (CG) gated pipes is described and field validated. OptGate proved its reliability in simulating the discharges along the gated pipe with RMSE = 0.29 and 0.119 m3/h for CG and SC, respectively, under a range of streaming head pressures ranging from 2 to 10 m with a 2-m step. The proposed model can provide users with the ability to predict system performance under different pressures, spacings, gate shapes and behaviors, pipe diameters, and land topography scenarios.
到目前为止,地表灌溉仍然是世界上最常用的灌溉方法。对许多发展中国家来说,转向现代加压灌溉受到系统和能源成本的阻碍。门控管是对沟灌的一种改进。它们为传统的地面系统提供了一种经济实惠的现代化选择。门控管道设计用于在低压下运行,具有减少输送损失、提高应用均匀性和减少径流的潜力,而径流通常是传播水传播疾病和降低水质的原因。然而,关于它们的性能的相关数据很少。本文介绍了一种用于自补偿(SC)和常规矩形(CG)门控管设计和性能分析的新模型(OptGate),并进行了现场验证。OptGate在流量水头压力范围为2 ~ 10 m,步长为2 m的情况下,模拟了CG和SC沿门控管道的流量,RMSE分别为0.29和0.119 m3/h,证明了其可靠性。所提出的模型可以为用户提供在不同压力、间距、闸门形状和行为、管径和地形情况下预测系统性能的能力。
{"title":"OptGate: A New Tool to Design and Analyze the Performance of Conventional and Self-Compensating Gated Pipe Systems","authors":"Ahmed A. Abdelmoneim, Andre Daccache, Roula Khadra","doi":"10.1061/jidedh.ireng-10100","DOIUrl":"https://doi.org/10.1061/jidedh.ireng-10100","url":null,"abstract":"Surface irrigation is still by far the most common method adopted worldwide. For many developing countries, shifting to modern pressurized irrigation is hampered by system and energy costs. Gated pipes are an improvement on furrow irrigation. They offer an affordable modernization option for traditional surface systems. Designed to operate at low pressure, gated pipes have the potential to reduce conveyance losses, improve application uniformity, and minimize runoff, which is often responsible for spreading waterborne diseases and lowering water quality. However, very little pertinent data are available on their performance. In this paper, a new model (OptGate) for the design and performance analysis of self-compensated (SC) and conventional rectangular (CG) gated pipes is described and field validated. OptGate proved its reliability in simulating the discharges along the gated pipe with RMSE = 0.29 and 0.119 m3/h for CG and SC, respectively, under a range of streaming head pressures ranging from 2 to 10 m with a 2-m step. The proposed model can provide users with the ability to predict system performance under different pressures, spacings, gate shapes and behaviors, pipe diameters, and land topography scenarios.","PeriodicalId":16260,"journal":{"name":"Journal of Irrigation and Drainage Engineering-asce","volume":"109 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134957269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydromechanics of the Asymmetric Trapezoidal Piano Key and Labyrinth Weirs 不对称梯形钢琴键与迷宫堰的流体力学
Pub Date : 2023-11-01 DOI: 10.1061/jidedh.ireng-10098
Akbar Safarzadeh, Shadi Alizadeh Marallo
{"title":"Hydromechanics of the Asymmetric Trapezoidal Piano Key and Labyrinth Weirs","authors":"Akbar Safarzadeh, Shadi Alizadeh Marallo","doi":"10.1061/jidedh.ireng-10098","DOIUrl":"https://doi.org/10.1061/jidedh.ireng-10098","url":null,"abstract":"","PeriodicalId":16260,"journal":{"name":"Journal of Irrigation and Drainage Engineering-asce","volume":"699 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134956755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of 40 Empirical Models for Estimating Reference Evapotranspiration under the Three Major Climate Zones of Iraq 伊拉克三大气候带40个参考蒸散估算模型的评价
Pub Date : 2023-11-01 DOI: 10.1061/jidedh.ireng-10187
Alaa Adel Jasim Al-Hasani, Shamsuddin Shahid
Accurate reference evapotranspiration (ETo) estimation is crucial for water irrigation management and sustainable agriculture planning. The difficulty in obtaining several data requirements for employing the recommended Food and Agriculture Organization Penman-Monteith method (FAO-PM) for reliable estimation of ETo has led to the development of many empirical models. This is particularly crucial for Iraq, located in West Asia (29°15′00″–38°15′00″ N; 38°45′00″–48°45′00″ E), where meteorological data are often limited or missing. The objectives of the present study were to assess the performance of 40 ETo empirical models (13 radiation-based, 13 mass-transfer-based, and 14 temperature-based) against the FAO-PM model and identify alternative models with the minimal available data in three major climatic zones of Iraq: the Mediterranean climate (MCZ), semiarid (SCZ), and arid desert (ACZ). The recent ERA5 data set was adopted. The results indicate that (1) the Rohwer mass-transfer method is the best for estimating ETo for two-thirds of Iraq with a mean correlation coefficient (R2) of 0.97, mean Kling-Gupta efficiency (KGE) of 0.84, mean percent bias (PBIAS) of −8.92%, mean Nash-Sutcliffe efficiency coefficient (NSE) of 0.92, and root mean square error (RMSE)-observations standard deviation ratio (RSR) of 0.27, followed by the Penman (R2=0.90, KGE=0.75, NSE=0.77, RSR=0.46, and PBIAS=6.36%) and Caprio (R2=0.90, KGE=0.66, NSE=0.54, RSR=0.58, and PBIAS=24.64%) models; (2) Caprio is the best radiation-based model for estimating ETo, mainly in the ACZ, whereas Kharrufa is the best temperature-based model for estimating ETo, primarily in the SCZ and ACZ. Overall, the mass-transfer-based models performed better than other-based models for ETo estimation. The outcomes of this study provide a scientific reference for accurate ETo estimation using empirical models under limited data sets, which is valuable for irrigation management in Iraq.Practical ApplicationsAccurately estimating ETo is vital for effective water irrigation management and sustainable agriculture planning. However, the recommended method for estimating ETo, the FAO-PM method, requires various data inputs that may not always be readily available, especially in regions like Iraq. Therefore, this study assessed the performance of 40 empirical ETo models, categorized into radiation-based, mass-transfer-based, and temperature-based models, against the FAO-PM model in three major climatic zones of Iraq: the Mediterranean climate, the semiarid region, and the arid desert. The study found that the Rohwer mass-transfer method showed the best performance in estimating ETo for two-thirds of Iraq. The Penman and Caprio models also performed well in estimating ETo in specific areas. The study revealed that the choice of the ETo model varied depending on the climatic zone. The Caprio model performed best for radiation-based estimation in the arid desert, whereas the Kharrufa model was most effective for tem
准确的参考蒸散量估算对于灌溉管理和可持续农业规划至关重要。采用粮农组织推荐的Penman-Monteith方法(FAO-PM)进行可靠的ETo估计,很难获得若干数据要求,这导致了许多经验模型的发展。这对于位于西亚(29°15 ' 00″-38°15 ' 00″N;38°45 ' 00″-48°45 ' 00″E),那里的气象数据往往有限或缺失。本研究的目的是评估40个ETo经验模型(13个基于辐射、13个基于传质和14个基于温度)与FAO-PM模型的性能,并利用伊拉克三个主要气候带(地中海气候区(MCZ)、半干旱气候区(SCZ)和干旱沙漠气候区(ACZ)的最小可用数据确定替代模型。采用最新的ERA5数据集。结果表明,(1)Rohwer传质法最适用于伊拉克三分之二地区的ETo估算,平均相关系数(R2)为0.97,平均克林-古普塔效率(KGE)为0.84,平均百分比偏差(PBIAS)为- 8.92%,平均纳希-苏特克里夫效率系数(NSE)为0.92,均方根误差(RMSE)-观测标准差比(RSR)为0.27,其次是Penman法(R2=0.90, KGE=0.75, NSE=0.77, RSR=0.46, PBIAS=6.36%)和Caprio法(R2=0.90, PBIAS= 0.92)。KGE=0.66, NSE=0.54, RSR=0.58, PBIAS=24.64%)模型;(2) Caprio是估算ETo的最佳辐射模式,主要在ACZ, Kharrufa是估算ETo的最佳温度模式,主要在SCZ和ACZ。总体而言,基于传质的模型比基于其他模型的ETo估计效果更好。本研究结果为在有限数据集下利用经验模型准确估算ETo提供了科学参考,对伊拉克灌溉管理具有一定的参考价值。实际应用准确估算土壤水分流失对有效的灌溉管理和可持续农业规划至关重要。然而,推荐的估算经济贸易组织的方法,即粮农组织- pm方法,需要各种数据输入,这些数据可能并不总是随时可用,特别是在伊拉克等地区。因此,本研究在伊拉克三个主要气候带(地中海气候、半干旱区和干旱沙漠)与FAO-PM模型对比,评估了40个经验ETo模型(基于辐射、基于传质和基于温度)的性能。研究发现,Rohwer传质法在估计伊拉克三分之二地区的ETo方面表现最好。Penman和Caprio模型在估算特定领域的ETo方面也表现良好。研究表明,ETo模型的选择因气候带的不同而不同。Caprio模式对干旱荒漠地区基于辐射的估算效果最好,而Kharrufa模式对半干旱区和干旱荒漠地区基于温度的估算效果最好。总体而言,基于传质的模型在ETo估计方面优于其他类型的模型。
{"title":"Assessment of 40 Empirical Models for Estimating Reference Evapotranspiration under the Three Major Climate Zones of Iraq","authors":"Alaa Adel Jasim Al-Hasani, Shamsuddin Shahid","doi":"10.1061/jidedh.ireng-10187","DOIUrl":"https://doi.org/10.1061/jidedh.ireng-10187","url":null,"abstract":"Accurate reference evapotranspiration (ETo) estimation is crucial for water irrigation management and sustainable agriculture planning. The difficulty in obtaining several data requirements for employing the recommended Food and Agriculture Organization Penman-Monteith method (FAO-PM) for reliable estimation of ETo has led to the development of many empirical models. This is particularly crucial for Iraq, located in West Asia (29°15′00″–38°15′00″ N; 38°45′00″–48°45′00″ E), where meteorological data are often limited or missing. The objectives of the present study were to assess the performance of 40 ETo empirical models (13 radiation-based, 13 mass-transfer-based, and 14 temperature-based) against the FAO-PM model and identify alternative models with the minimal available data in three major climatic zones of Iraq: the Mediterranean climate (MCZ), semiarid (SCZ), and arid desert (ACZ). The recent ERA5 data set was adopted. The results indicate that (1) the Rohwer mass-transfer method is the best for estimating ETo for two-thirds of Iraq with a mean correlation coefficient (R2) of 0.97, mean Kling-Gupta efficiency (KGE) of 0.84, mean percent bias (PBIAS) of −8.92%, mean Nash-Sutcliffe efficiency coefficient (NSE) of 0.92, and root mean square error (RMSE)-observations standard deviation ratio (RSR) of 0.27, followed by the Penman (R2=0.90, KGE=0.75, NSE=0.77, RSR=0.46, and PBIAS=6.36%) and Caprio (R2=0.90, KGE=0.66, NSE=0.54, RSR=0.58, and PBIAS=24.64%) models; (2) Caprio is the best radiation-based model for estimating ETo, mainly in the ACZ, whereas Kharrufa is the best temperature-based model for estimating ETo, primarily in the SCZ and ACZ. Overall, the mass-transfer-based models performed better than other-based models for ETo estimation. The outcomes of this study provide a scientific reference for accurate ETo estimation using empirical models under limited data sets, which is valuable for irrigation management in Iraq.Practical ApplicationsAccurately estimating ETo is vital for effective water irrigation management and sustainable agriculture planning. However, the recommended method for estimating ETo, the FAO-PM method, requires various data inputs that may not always be readily available, especially in regions like Iraq. Therefore, this study assessed the performance of 40 empirical ETo models, categorized into radiation-based, mass-transfer-based, and temperature-based models, against the FAO-PM model in three major climatic zones of Iraq: the Mediterranean climate, the semiarid region, and the arid desert. The study found that the Rohwer mass-transfer method showed the best performance in estimating ETo for two-thirds of Iraq. The Penman and Caprio models also performed well in estimating ETo in specific areas. The study revealed that the choice of the ETo model varied depending on the climatic zone. The Caprio model performed best for radiation-based estimation in the arid desert, whereas the Kharrufa model was most effective for tem","PeriodicalId":16260,"journal":{"name":"Journal of Irrigation and Drainage Engineering-asce","volume":"60 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134957270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closure to “Air–Water Flows and Head Losses on Stepped Spillways with Inclined Steps” 关闭“有倾斜台阶的阶梯式溢洪道的空气-水流动及水头损失”
Pub Date : 2023-07-01 DOI: 10.1061/jidedh.ireng-10129
Yvan Arosquipa-Nina, Rui Shi, Davide Wűthrich, Hubert Chanson
{"title":"Closure to “Air–Water Flows and Head Losses on Stepped Spillways with Inclined Steps”","authors":"Yvan Arosquipa-Nina, Rui Shi, Davide Wűthrich, Hubert Chanson","doi":"10.1061/jidedh.ireng-10129","DOIUrl":"https://doi.org/10.1061/jidedh.ireng-10129","url":null,"abstract":"","PeriodicalId":16260,"journal":{"name":"Journal of Irrigation and Drainage Engineering-asce","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135011312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closure to “Application of AI Approaches to Estimate Discharge Coefficient of Novel Kind of Sharp-Crested V-Notch Weirs” “应用人工智能方法估算新型尖顶v型缺口堰流量系数”结束语
Pub Date : 2023-07-01 DOI: 10.1061/jidedh.ireng-10045
Amin Gharehbaghi, Redvan Ghasemlounia
{"title":"Closure to “Application of AI Approaches to Estimate Discharge Coefficient of Novel Kind of Sharp-Crested V-Notch Weirs”","authors":"Amin Gharehbaghi, Redvan Ghasemlounia","doi":"10.1061/jidedh.ireng-10045","DOIUrl":"https://doi.org/10.1061/jidedh.ireng-10045","url":null,"abstract":"","PeriodicalId":16260,"journal":{"name":"Journal of Irrigation and Drainage Engineering-asce","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135011318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closure to “Transverse Nonuniformity of Air–Water Flow and Lateral Wall Effects in Quasi-Two-Dimensional Hydraulic Jump” “准二维水跃中气-水横向流动不均匀性及侧壁效应”的结语
Pub Date : 2023-04-01 DOI: 10.1061/jidedh.ireng-10094
Jingmei Zhang, Rongcai Tang, Ruidi Bai, Hang Wang
{"title":"Closure to “Transverse Nonuniformity of Air–Water Flow and Lateral Wall Effects in Quasi-Two-Dimensional Hydraulic Jump”","authors":"Jingmei Zhang, Rongcai Tang, Ruidi Bai, Hang Wang","doi":"10.1061/jidedh.ireng-10094","DOIUrl":"https://doi.org/10.1061/jidedh.ireng-10094","url":null,"abstract":"","PeriodicalId":16260,"journal":{"name":"Journal of Irrigation and Drainage Engineering-asce","volume":"110 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136383106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closure to “Some Insights on Flow over Sharp-Crested Weirs Using Computational Fluid Dynamics: Implications for Enhanced Flow Measurement” “利用计算流体动力学对尖顶堰流量的一些见解:对增强流量测量的影响”的结束语
Pub Date : 2023-04-01 DOI: 10.1061/jidedh.ireng-10075
Joseph M. Sinclair, S. Karan Venayagamoorthy, Timothy K. Gates
{"title":"Closure to “Some Insights on Flow over Sharp-Crested Weirs Using Computational Fluid Dynamics: Implications for Enhanced Flow Measurement”","authors":"Joseph M. Sinclair, S. Karan Venayagamoorthy, Timothy K. Gates","doi":"10.1061/jidedh.ireng-10075","DOIUrl":"https://doi.org/10.1061/jidedh.ireng-10075","url":null,"abstract":"","PeriodicalId":16260,"journal":{"name":"Journal of Irrigation and Drainage Engineering-asce","volume":"237 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136382808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reviewers 评论家
Pub Date : 2023-02-01 DOI: 10.1061/jidedh.ireng-10066
{"title":"Reviewers","authors":"","doi":"10.1061/jidedh.ireng-10066","DOIUrl":"https://doi.org/10.1061/jidedh.ireng-10066","url":null,"abstract":"","PeriodicalId":16260,"journal":{"name":"Journal of Irrigation and Drainage Engineering-asce","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136097244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Irrigation and Drainage Engineering-asce
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1