{"title":"间歇泉启发算法:用于实际参数和受限工程优化的全新地质启发元启发式算法","authors":"Mojtaba Ghasemi, Mohsen Zare, Amir Zahedi, Mohammad-Amin Akbari, Seyedali Mirjalili, Laith Abualigah","doi":"10.1007/s42235-023-00437-8","DOIUrl":null,"url":null,"abstract":"<div><p>Over the past years, many efforts have been accomplished to achieve fast and accurate meta-heuristic algorithms to optimize a variety of real-world problems. This study presents a new optimization method based on an unusual geological phenomenon in nature, named Geyser inspired Algorithm (GEA). The mathematical modeling of this geological phenomenon is carried out to have a better understanding of the optimization process. The efficiency and accuracy of GEA are verified using statistical examination and convergence rate comparison on numerous CEC 2005, CEC 2014, CEC 2017, and real-parameter benchmark functions. Moreover, GEA has been applied to several real-parameter engineering optimization problems to evaluate its effectiveness. In addition, to demonstrate the applicability and robustness of GEA, a comprehensive investigation is performed for a fair comparison with other standard optimization methods. The results demonstrate that GEA is noticeably prosperous in reaching the optimal solutions with a high convergence rate in comparison with other well-known nature-inspired algorithms, including ABC, BBO, PSO, and RCGA. Note that the source code of the GEA is publicly available at https://www.optim-app.com/projects/gea.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 1","pages":"374 - 408"},"PeriodicalIF":4.9000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geyser Inspired Algorithm: A New Geological-inspired Meta-heuristic for Real-parameter and Constrained Engineering Optimization\",\"authors\":\"Mojtaba Ghasemi, Mohsen Zare, Amir Zahedi, Mohammad-Amin Akbari, Seyedali Mirjalili, Laith Abualigah\",\"doi\":\"10.1007/s42235-023-00437-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Over the past years, many efforts have been accomplished to achieve fast and accurate meta-heuristic algorithms to optimize a variety of real-world problems. This study presents a new optimization method based on an unusual geological phenomenon in nature, named Geyser inspired Algorithm (GEA). The mathematical modeling of this geological phenomenon is carried out to have a better understanding of the optimization process. The efficiency and accuracy of GEA are verified using statistical examination and convergence rate comparison on numerous CEC 2005, CEC 2014, CEC 2017, and real-parameter benchmark functions. Moreover, GEA has been applied to several real-parameter engineering optimization problems to evaluate its effectiveness. In addition, to demonstrate the applicability and robustness of GEA, a comprehensive investigation is performed for a fair comparison with other standard optimization methods. The results demonstrate that GEA is noticeably prosperous in reaching the optimal solutions with a high convergence rate in comparison with other well-known nature-inspired algorithms, including ABC, BBO, PSO, and RCGA. Note that the source code of the GEA is publicly available at https://www.optim-app.com/projects/gea.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"21 1\",\"pages\":\"374 - 408\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-023-00437-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-023-00437-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Geyser Inspired Algorithm: A New Geological-inspired Meta-heuristic for Real-parameter and Constrained Engineering Optimization
Over the past years, many efforts have been accomplished to achieve fast and accurate meta-heuristic algorithms to optimize a variety of real-world problems. This study presents a new optimization method based on an unusual geological phenomenon in nature, named Geyser inspired Algorithm (GEA). The mathematical modeling of this geological phenomenon is carried out to have a better understanding of the optimization process. The efficiency and accuracy of GEA are verified using statistical examination and convergence rate comparison on numerous CEC 2005, CEC 2014, CEC 2017, and real-parameter benchmark functions. Moreover, GEA has been applied to several real-parameter engineering optimization problems to evaluate its effectiveness. In addition, to demonstrate the applicability and robustness of GEA, a comprehensive investigation is performed for a fair comparison with other standard optimization methods. The results demonstrate that GEA is noticeably prosperous in reaching the optimal solutions with a high convergence rate in comparison with other well-known nature-inspired algorithms, including ABC, BBO, PSO, and RCGA. Note that the source code of the GEA is publicly available at https://www.optim-app.com/projects/gea.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.