基于马鹿优化算法的深度卷积生成对抗网络自动分割和检测肺腺癌

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Information Technology and Control Pub Date : 2023-09-26 DOI:10.5755/j01.itc.52.3.33659
N. Sasikumar, M. Senthilkumar
{"title":"基于马鹿优化算法的深度卷积生成对抗网络自动分割和检测肺腺癌","authors":"N. Sasikumar, M. Senthilkumar","doi":"10.5755/j01.itc.52.3.33659","DOIUrl":null,"url":null,"abstract":"The diagnosis of early-stage lung cancer can be challenging due to several factors. Firstly, the asymptomatic nature of the disease means that it may not present any noticeable symptoms until it has progressed to later stages. Additionally, the use of computed tomography, which can be expensive and involves repetitive radiation exposure, can further complicate the diagnostic process. Even specialists may encounter difficulties when examining lung CT imagery to identify pulmonary nodules, particularly in the case of cell lung adenocarcinoma lesions.This paper suggests a unique deep learning-based Deep Convolutional Generative Adversarial Networks (DCGAN) model for lung cancer classification. The dataset utilized for the experimental purpose is accessed from the LUNA16 challenge database. This comprises 888 CT scans of the lungs. These images are initially segmented using Quick-CapsNet (QCN) model and applied with Red Deer Optimization (RDO) algorithm to extract the optimized features. Furthermore, the categorization between benign and malignant tumors is carried out using the DC-GAN model. The pulmonary nodule detection accuracy of the proposed model is 98.65%, indicating early-stage lung cancer. It is discovered to be superior to other existing techniques, such as sophisticated deep learning, straightforward machine learning, and hybrid methods applied to lung CT scans for nodule diagnosis. According to experimental findings, the suggested way can significantly help radiologists spot early lung cancer and facilitate prompt patient management.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"32 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Convolutional Generative Adversarial Networks for Automated Segmentation and Detection of Lung Adenocarcinoma Using Red Deer Optimization Algorithm\",\"authors\":\"N. Sasikumar, M. Senthilkumar\",\"doi\":\"10.5755/j01.itc.52.3.33659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diagnosis of early-stage lung cancer can be challenging due to several factors. Firstly, the asymptomatic nature of the disease means that it may not present any noticeable symptoms until it has progressed to later stages. Additionally, the use of computed tomography, which can be expensive and involves repetitive radiation exposure, can further complicate the diagnostic process. Even specialists may encounter difficulties when examining lung CT imagery to identify pulmonary nodules, particularly in the case of cell lung adenocarcinoma lesions.This paper suggests a unique deep learning-based Deep Convolutional Generative Adversarial Networks (DCGAN) model for lung cancer classification. The dataset utilized for the experimental purpose is accessed from the LUNA16 challenge database. This comprises 888 CT scans of the lungs. These images are initially segmented using Quick-CapsNet (QCN) model and applied with Red Deer Optimization (RDO) algorithm to extract the optimized features. Furthermore, the categorization between benign and malignant tumors is carried out using the DC-GAN model. The pulmonary nodule detection accuracy of the proposed model is 98.65%, indicating early-stage lung cancer. It is discovered to be superior to other existing techniques, such as sophisticated deep learning, straightforward machine learning, and hybrid methods applied to lung CT scans for nodule diagnosis. According to experimental findings, the suggested way can significantly help radiologists spot early lung cancer and facilitate prompt patient management.\",\"PeriodicalId\":54982,\"journal\":{\"name\":\"Information Technology and Control\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.itc.52.3.33659\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j01.itc.52.3.33659","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于几个因素,早期肺癌的诊断可能具有挑战性。首先,该疾病的无症状性质意味着在发展到后期阶段之前可能不会出现任何明显的症状。此外,使用计算机断层扫描,可能是昂贵的,涉及到重复的辐射暴露,可以进一步复杂化诊断过程。即使是专家在检查肺部CT图像以识别肺结节时也可能遇到困难,特别是在肺细胞腺癌病变的情况下。本文提出了一种独特的基于深度学习的深度卷积生成对抗网络(DCGAN)肺癌分类模型。实验使用的数据集来自LUNA16挑战数据库。这包括888次肺部CT扫描。首先使用Quick-CapsNet (QCN)模型对图像进行分割,然后使用Red Deer Optimization (RDO)算法提取优化后的特征。此外,使用DC-GAN模型对良恶性肿瘤进行分类。该模型的肺结节检测准确率为98.65%,提示为早期肺癌。它被发现优于其他现有技术,如复杂的深度学习、直接的机器学习和用于肺CT扫描结节诊断的混合方法。实验结果表明,该方法能显著帮助放射科医师发现早期肺癌,便于患者及时处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Convolutional Generative Adversarial Networks for Automated Segmentation and Detection of Lung Adenocarcinoma Using Red Deer Optimization Algorithm
The diagnosis of early-stage lung cancer can be challenging due to several factors. Firstly, the asymptomatic nature of the disease means that it may not present any noticeable symptoms until it has progressed to later stages. Additionally, the use of computed tomography, which can be expensive and involves repetitive radiation exposure, can further complicate the diagnostic process. Even specialists may encounter difficulties when examining lung CT imagery to identify pulmonary nodules, particularly in the case of cell lung adenocarcinoma lesions.This paper suggests a unique deep learning-based Deep Convolutional Generative Adversarial Networks (DCGAN) model for lung cancer classification. The dataset utilized for the experimental purpose is accessed from the LUNA16 challenge database. This comprises 888 CT scans of the lungs. These images are initially segmented using Quick-CapsNet (QCN) model and applied with Red Deer Optimization (RDO) algorithm to extract the optimized features. Furthermore, the categorization between benign and malignant tumors is carried out using the DC-GAN model. The pulmonary nodule detection accuracy of the proposed model is 98.65%, indicating early-stage lung cancer. It is discovered to be superior to other existing techniques, such as sophisticated deep learning, straightforward machine learning, and hybrid methods applied to lung CT scans for nodule diagnosis. According to experimental findings, the suggested way can significantly help radiologists spot early lung cancer and facilitate prompt patient management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Technology and Control
Information Technology and Control 工程技术-计算机:人工智能
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
12 months
期刊介绍: Periodical journal covers a wide field of computer science and control systems related problems including: -Software and hardware engineering; -Management systems engineering; -Information systems and databases; -Embedded systems; -Physical systems modelling and application; -Computer networks and cloud computing; -Data visualization; -Human-computer interface; -Computer graphics, visual analytics, and multimedia systems.
期刊最新文献
Model construction of big data asset management system for digital power grid regulation Melanoma Diagnosis Using Enhanced Faster Region Convolutional Neural Networks Optimized by Artificial Gorilla Troops Algorithm A Scalable and Stacked Ensemble Approach to Improve Intrusion Detection in Clouds Traffic Sign Detection Algorithm Based on Improved Yolox Apply Physical System Model and Computer Algorithm to Identify Osmanthus Fragrans Seed Vigor Based on Hyperspectral Imaging and Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1