{"title":"基于帧循环特征的PCMA信号调制参数盲估计","authors":"Fang Li, Zhaoyang Qiu, Xiong Zha, Tianyun Li","doi":"10.1186/s13634-023-01055-6","DOIUrl":null,"url":null,"abstract":"Abstract Blind receiver technologies for paired carrier multiple access (PCMA) signals have always been a challenging task with many technical difficulties, among which the estimation of modulation parameters is a fundamental but important element. Despite some achievements in previous studies, more systematic and sophisticated estimation methods have not been adequately investigated. In this paper, schemes for the blind estimation of the symbol timing phase, amplitude attenuation, frequency offset, and carrier phase for PCMA signals in satellite communications are proposed. The data flow transmitted in satellite communication often has a certain frame structure, the most important of which is the synchronization data, namely the so-called cycle features. The proposed schemes assume that the modulated signals have fixed frame length and frame sync code and that the symbol rate has been estimated when the signals are encoded asynchronously. Distinct from the previous methods, our schemes exploit the sync waveform and the overlapping waveform, which are estimated via singular value decomposition (SVD) (using the frame cyclic features) and interference cancelation, together with their demodulation results as aid data, for the estimation of the desired parameters. The simulation results demonstrate that the schemes are effective in the parameters estimation of PCMA signals and outperform the comparison algorithms.","PeriodicalId":49203,"journal":{"name":"Eurasip Journal on Advances in Signal Processing","volume":"42 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind estimation of modulation parameters for PCMA signals using frame cyclic features\",\"authors\":\"Fang Li, Zhaoyang Qiu, Xiong Zha, Tianyun Li\",\"doi\":\"10.1186/s13634-023-01055-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Blind receiver technologies for paired carrier multiple access (PCMA) signals have always been a challenging task with many technical difficulties, among which the estimation of modulation parameters is a fundamental but important element. Despite some achievements in previous studies, more systematic and sophisticated estimation methods have not been adequately investigated. In this paper, schemes for the blind estimation of the symbol timing phase, amplitude attenuation, frequency offset, and carrier phase for PCMA signals in satellite communications are proposed. The data flow transmitted in satellite communication often has a certain frame structure, the most important of which is the synchronization data, namely the so-called cycle features. The proposed schemes assume that the modulated signals have fixed frame length and frame sync code and that the symbol rate has been estimated when the signals are encoded asynchronously. Distinct from the previous methods, our schemes exploit the sync waveform and the overlapping waveform, which are estimated via singular value decomposition (SVD) (using the frame cyclic features) and interference cancelation, together with their demodulation results as aid data, for the estimation of the desired parameters. The simulation results demonstrate that the schemes are effective in the parameters estimation of PCMA signals and outperform the comparison algorithms.\",\"PeriodicalId\":49203,\"journal\":{\"name\":\"Eurasip Journal on Advances in Signal Processing\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasip Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-023-01055-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Advances in Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13634-023-01055-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Blind estimation of modulation parameters for PCMA signals using frame cyclic features
Abstract Blind receiver technologies for paired carrier multiple access (PCMA) signals have always been a challenging task with many technical difficulties, among which the estimation of modulation parameters is a fundamental but important element. Despite some achievements in previous studies, more systematic and sophisticated estimation methods have not been adequately investigated. In this paper, schemes for the blind estimation of the symbol timing phase, amplitude attenuation, frequency offset, and carrier phase for PCMA signals in satellite communications are proposed. The data flow transmitted in satellite communication often has a certain frame structure, the most important of which is the synchronization data, namely the so-called cycle features. The proposed schemes assume that the modulated signals have fixed frame length and frame sync code and that the symbol rate has been estimated when the signals are encoded asynchronously. Distinct from the previous methods, our schemes exploit the sync waveform and the overlapping waveform, which are estimated via singular value decomposition (SVD) (using the frame cyclic features) and interference cancelation, together with their demodulation results as aid data, for the estimation of the desired parameters. The simulation results demonstrate that the schemes are effective in the parameters estimation of PCMA signals and outperform the comparison algorithms.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.