基于改进Whale优化算法的脑电信号分类深度学习模型优化

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Information Technology and Control Pub Date : 2023-09-26 DOI:10.5755/j01.itc.52.3.33320
K. Venu, P. Natesan
{"title":"基于改进Whale优化算法的脑电信号分类深度学习模型优化","authors":"K. Venu, P. Natesan","doi":"10.5755/j01.itc.52.3.33320","DOIUrl":null,"url":null,"abstract":"Brain-Computer Interface (BCI) is a technology in which Electroencephalogram (EEG) signals are utilized to create a link between a person’s mental state and a computer-based signal processing system that decodes the signals without needing muscle movement. The mental process of picturing the movement of a body component without actually moving that body part is known as Motor Imagery (MI). MI BCI is a Motor Imagery-based Brain-Computer Interface that allows patients with motor impairments to interact with their environment by operating robotic prostheses, wheelchairs, and other equipment. Feature extraction and classification are essential parts of the EEG signal processing for MI BCI. In this work, Whales Optimization Algorithm with an Improved Mutualism Phase is proposed to find the optimal Convolutional Neural Network architecture for the classification of motor imagery tasks with high accuracy and less computational complexity. The Neurosky and BCI IV 2a datasets were used to evaluate the proposed methodology. Experiments demonstrate that the suggested technique outperforms other competing methods regarding classification accuracy values at 94.1% and 87.7% for the Neurosky and BCI datasets, respectively.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"33 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Deep Learning Model Using Modified Whale’s Optimization Algorithm for EEG Signal Classification\",\"authors\":\"K. Venu, P. Natesan\",\"doi\":\"10.5755/j01.itc.52.3.33320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-Computer Interface (BCI) is a technology in which Electroencephalogram (EEG) signals are utilized to create a link between a person’s mental state and a computer-based signal processing system that decodes the signals without needing muscle movement. The mental process of picturing the movement of a body component without actually moving that body part is known as Motor Imagery (MI). MI BCI is a Motor Imagery-based Brain-Computer Interface that allows patients with motor impairments to interact with their environment by operating robotic prostheses, wheelchairs, and other equipment. Feature extraction and classification are essential parts of the EEG signal processing for MI BCI. In this work, Whales Optimization Algorithm with an Improved Mutualism Phase is proposed to find the optimal Convolutional Neural Network architecture for the classification of motor imagery tasks with high accuracy and less computational complexity. The Neurosky and BCI IV 2a datasets were used to evaluate the proposed methodology. Experiments demonstrate that the suggested technique outperforms other competing methods regarding classification accuracy values at 94.1% and 87.7% for the Neurosky and BCI datasets, respectively.\",\"PeriodicalId\":54982,\"journal\":{\"name\":\"Information Technology and Control\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.itc.52.3.33320\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j01.itc.52.3.33320","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

脑机接口(BCI)是一种利用脑电图(EEG)信号在人的精神状态和基于计算机的信号处理系统之间建立联系的技术,该系统无需肌肉运动即可解码信号。在不实际移动身体部位的情况下,想象身体某个部位运动的心理过程被称为运动想象(MI)。MI BCI是一种基于运动图像的脑机接口,它允许运动障碍患者通过操作机器人假肢、轮椅和其他设备与他们的环境进行互动。特征提取和分类是脑电信号处理的重要组成部分。本文提出了一种改进的互共生阶段的whale优化算法,以寻找最优的卷积神经网络架构,用于高精度和低计算复杂度的运动图像任务分类。使用Neurosky和BCI IV 2a数据集来评估所提出的方法。实验表明,在Neurosky和BCI数据集上,该方法的分类准确率分别为94.1%和87.7%,优于其他竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized Deep Learning Model Using Modified Whale’s Optimization Algorithm for EEG Signal Classification
Brain-Computer Interface (BCI) is a technology in which Electroencephalogram (EEG) signals are utilized to create a link between a person’s mental state and a computer-based signal processing system that decodes the signals without needing muscle movement. The mental process of picturing the movement of a body component without actually moving that body part is known as Motor Imagery (MI). MI BCI is a Motor Imagery-based Brain-Computer Interface that allows patients with motor impairments to interact with their environment by operating robotic prostheses, wheelchairs, and other equipment. Feature extraction and classification are essential parts of the EEG signal processing for MI BCI. In this work, Whales Optimization Algorithm with an Improved Mutualism Phase is proposed to find the optimal Convolutional Neural Network architecture for the classification of motor imagery tasks with high accuracy and less computational complexity. The Neurosky and BCI IV 2a datasets were used to evaluate the proposed methodology. Experiments demonstrate that the suggested technique outperforms other competing methods regarding classification accuracy values at 94.1% and 87.7% for the Neurosky and BCI datasets, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Technology and Control
Information Technology and Control 工程技术-计算机:人工智能
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
12 months
期刊介绍: Periodical journal covers a wide field of computer science and control systems related problems including: -Software and hardware engineering; -Management systems engineering; -Information systems and databases; -Embedded systems; -Physical systems modelling and application; -Computer networks and cloud computing; -Data visualization; -Human-computer interface; -Computer graphics, visual analytics, and multimedia systems.
期刊最新文献
Model construction of big data asset management system for digital power grid regulation Melanoma Diagnosis Using Enhanced Faster Region Convolutional Neural Networks Optimized by Artificial Gorilla Troops Algorithm A Scalable and Stacked Ensemble Approach to Improve Intrusion Detection in Clouds Traffic Sign Detection Algorithm Based on Improved Yolox Apply Physical System Model and Computer Algorithm to Identify Osmanthus Fragrans Seed Vigor Based on Hyperspectral Imaging and Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1