Ana C. Morales, Brianna N. Peterson, Steven A. Sharpe, Shelby M. Huston, Jay M. Tomlin, Felipe A. Rivera-Adorno, Ryan C. Moffet, Alla Zelenyuk, Alexander Laskin
{"title":"高粘性亚微米有机颗粒的多模态化学表征。","authors":"Ana C. Morales, Brianna N. Peterson, Steven A. Sharpe, Shelby M. Huston, Jay M. Tomlin, Felipe A. Rivera-Adorno, Ryan C. Moffet, Alla Zelenyuk, Alexander Laskin","doi":"10.1080/02786826.2023.2266494","DOIUrl":null,"url":null,"abstract":"AbstractDistinguishing highly viscous organic particles within complex mixtures of atmospheric aerosol and accurate descriptions of their composition, size distributions, and mixing states are challenges at the forefront of aerosol measurement science and technology. Here, we present results obtained from complementary single-particle measurement techniques employed for the in-depth characterization of highly viscous particles. We demonstrate advantages and synergy of this multi-modal particle characterization approach based on the analysis of individual viscous particles formed in the air-discharged waste produced by a common sewer pipe rehabilitation technology. Using oil immersion flow microscopy, we investigate particle size distributions and morphology of colloidal components present in field-collected aqueous waste condensates. We compare these results with corresponding measurements of viscous particles formed in drying droplets of the aerosolized discharged waste. The colloidal components and viscous particles were found to be approximately 10 µm and 0.5 µm, respectively. The aerosolized viscous particles exhibited a spherical morphology, while the colloidal particles appeared noticeably fractal, resembling fragments of a cured composite material. Chemical imaging of the viscous particles collected on substrates was performed using scanning electron microscopy and soft X-ray spectro-microscopy techniques. Through these methods, comprehensive description of these particles emerged, confirming their high solid-like viscosity, wide-ranging sizes, diverse carbon speciation with high degrees of oxygenation, and high organic volume fractions. The aerosolized viscous particles were further characterized using high-throughput single particle mass spectrometry. This technique provides real-time measurements of composition, size, and morphological metrics for large numbers of individual particles, enabling the identification of their distinct mass spectrometric signatures.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-modal Chemical Characterization of Highly Viscous Submicrometer Organic Particles.\",\"authors\":\"Ana C. Morales, Brianna N. Peterson, Steven A. Sharpe, Shelby M. Huston, Jay M. Tomlin, Felipe A. Rivera-Adorno, Ryan C. Moffet, Alla Zelenyuk, Alexander Laskin\",\"doi\":\"10.1080/02786826.2023.2266494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractDistinguishing highly viscous organic particles within complex mixtures of atmospheric aerosol and accurate descriptions of their composition, size distributions, and mixing states are challenges at the forefront of aerosol measurement science and technology. Here, we present results obtained from complementary single-particle measurement techniques employed for the in-depth characterization of highly viscous particles. We demonstrate advantages and synergy of this multi-modal particle characterization approach based on the analysis of individual viscous particles formed in the air-discharged waste produced by a common sewer pipe rehabilitation technology. Using oil immersion flow microscopy, we investigate particle size distributions and morphology of colloidal components present in field-collected aqueous waste condensates. We compare these results with corresponding measurements of viscous particles formed in drying droplets of the aerosolized discharged waste. The colloidal components and viscous particles were found to be approximately 10 µm and 0.5 µm, respectively. The aerosolized viscous particles exhibited a spherical morphology, while the colloidal particles appeared noticeably fractal, resembling fragments of a cured composite material. Chemical imaging of the viscous particles collected on substrates was performed using scanning electron microscopy and soft X-ray spectro-microscopy techniques. Through these methods, comprehensive description of these particles emerged, confirming their high solid-like viscosity, wide-ranging sizes, diverse carbon speciation with high degrees of oxygenation, and high organic volume fractions. The aerosolized viscous particles were further characterized using high-throughput single particle mass spectrometry. This technique provides real-time measurements of composition, size, and morphological metrics for large numbers of individual particles, enabling the identification of their distinct mass spectrometric signatures.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.\",\"PeriodicalId\":7474,\"journal\":{\"name\":\"Aerosol Science and Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02786826.2023.2266494\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02786826.2023.2266494","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Multi-modal Chemical Characterization of Highly Viscous Submicrometer Organic Particles.
AbstractDistinguishing highly viscous organic particles within complex mixtures of atmospheric aerosol and accurate descriptions of their composition, size distributions, and mixing states are challenges at the forefront of aerosol measurement science and technology. Here, we present results obtained from complementary single-particle measurement techniques employed for the in-depth characterization of highly viscous particles. We demonstrate advantages and synergy of this multi-modal particle characterization approach based on the analysis of individual viscous particles formed in the air-discharged waste produced by a common sewer pipe rehabilitation technology. Using oil immersion flow microscopy, we investigate particle size distributions and morphology of colloidal components present in field-collected aqueous waste condensates. We compare these results with corresponding measurements of viscous particles formed in drying droplets of the aerosolized discharged waste. The colloidal components and viscous particles were found to be approximately 10 µm and 0.5 µm, respectively. The aerosolized viscous particles exhibited a spherical morphology, while the colloidal particles appeared noticeably fractal, resembling fragments of a cured composite material. Chemical imaging of the viscous particles collected on substrates was performed using scanning electron microscopy and soft X-ray spectro-microscopy techniques. Through these methods, comprehensive description of these particles emerged, confirming their high solid-like viscosity, wide-ranging sizes, diverse carbon speciation with high degrees of oxygenation, and high organic volume fractions. The aerosolized viscous particles were further characterized using high-throughput single particle mass spectrometry. This technique provides real-time measurements of composition, size, and morphological metrics for large numbers of individual particles, enabling the identification of their distinct mass spectrometric signatures.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.
期刊介绍:
Aerosol Science and Technology publishes theoretical, numerical and experimental investigations papers that advance knowledge of aerosols and facilitate its application. Articles on either basic or applied work are suitable. Examples of topics include instrumentation for the measurement of aerosol physical, optical, chemical and biological properties; aerosol dynamics and transport phenomena; numerical modeling; charging; nucleation; nanoparticles and nanotechnology; lung deposition and health effects; filtration; and aerosol generation.
Consistent with the criteria given above, papers that deal with the atmosphere, climate change, indoor and workplace environments, homeland security, pharmaceutical aerosols, combustion sources, aerosol synthesis reactors, and contamination control in semiconductor manufacturing will be considered. AST normally does not consider papers that describe routine measurements or models for aerosol air quality assessment.