s系列翼型气动特性评价

Hamzah Jaffar, Laith Al-Sadawi, Abdulkareem Khudair, Till Biedermann
{"title":"s系列翼型气动特性评价","authors":"Hamzah Jaffar, Laith Al-Sadawi, Abdulkareem Khudair, Till Biedermann","doi":"10.30684/etj.2023.141757.1512","DOIUrl":null,"url":null,"abstract":"The present study utilizes the commercial software ANSYS-Fluent to explore the influence of the geometry of thick S- S-series airfoil on the near-wake region. Four different S-series airfoils, namely S809, S811, S814, and S818, were investigated at a wide range of angles of attack, which were varied from 0 degrees to 20 degrees with an increment of 2 degrees and at a Reynolds number based on chord length Re = 1x106. Analysis of the resultant data revealed that the aerodynamic performance of the S811 and S818 airfoils superseded that of the S809 and S814 airfoils. To illustrate, at the critical angle of attack, S811 and S818 were observed to possess the maximum lift and minimum drag coefficients. Furthermore, in the range of attack angles between 10 and 16 degrees, these airfoils consistently demonstrated lower drag than the others tested, enhancing overall aerodynamic performance. These findings underscore the significant role played by airfoil geometry in influencing aerodynamic performance and provide insights into optimal design parameters for wind turbine blades, particularly highlighting the advantages of the S811 and S818 airfoil shapes. In addition, the effect of the unsteady structures in the near-wake zone behind the trailing was also evaluated through turbulence kinetic energy contours. The results revealed a decrease in turbulence kinetic energy when the S811 and S818 airfoils were placed in a cross-flow compared to the S809 and S814 airfoils. This indicates that the strength of the vortex shedding of these airfoils is lower than that of the S809 and S8014 airfoils.","PeriodicalId":476841,"journal":{"name":"Maǧallaẗ al-handasaẗ wa-al-tiknūlūǧiyā","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic Characteristics Evaluation of S-Series Airfoils\",\"authors\":\"Hamzah Jaffar, Laith Al-Sadawi, Abdulkareem Khudair, Till Biedermann\",\"doi\":\"10.30684/etj.2023.141757.1512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study utilizes the commercial software ANSYS-Fluent to explore the influence of the geometry of thick S- S-series airfoil on the near-wake region. Four different S-series airfoils, namely S809, S811, S814, and S818, were investigated at a wide range of angles of attack, which were varied from 0 degrees to 20 degrees with an increment of 2 degrees and at a Reynolds number based on chord length Re = 1x106. Analysis of the resultant data revealed that the aerodynamic performance of the S811 and S818 airfoils superseded that of the S809 and S814 airfoils. To illustrate, at the critical angle of attack, S811 and S818 were observed to possess the maximum lift and minimum drag coefficients. Furthermore, in the range of attack angles between 10 and 16 degrees, these airfoils consistently demonstrated lower drag than the others tested, enhancing overall aerodynamic performance. These findings underscore the significant role played by airfoil geometry in influencing aerodynamic performance and provide insights into optimal design parameters for wind turbine blades, particularly highlighting the advantages of the S811 and S818 airfoil shapes. In addition, the effect of the unsteady structures in the near-wake zone behind the trailing was also evaluated through turbulence kinetic energy contours. The results revealed a decrease in turbulence kinetic energy when the S811 and S818 airfoils were placed in a cross-flow compared to the S809 and S814 airfoils. This indicates that the strength of the vortex shedding of these airfoils is lower than that of the S809 and S8014 airfoils.\",\"PeriodicalId\":476841,\"journal\":{\"name\":\"Maǧallaẗ al-handasaẗ wa-al-tiknūlūǧiyā\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maǧallaẗ al-handasaẗ wa-al-tiknūlūǧiyā\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30684/etj.2023.141757.1512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maǧallaẗ al-handasaẗ wa-al-tiknūlūǧiyā","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30684/etj.2023.141757.1512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用商业软件ANSYS-Fluent,研究了厚S- S系列翼型的几何形状对近尾流区的影响。四种不同的s系列翼型,即S809、S811、S814和S818,在大范围的迎角范围内进行了研究,迎角范围从0度到20度,增量为2度,雷诺数基于弦长Re = 1x106。由此产生的数据分析表明,S811和S818翼型的空气动力学性能取代了S809和S814翼型。为了说明这一点,在临界迎角下,观察到S811和S818具有最大升力和最小阻力系数。此外,在10至16度的攻角范围内,这些翼型始终表现出比其他测试更低的阻力,增强了整体气动性能。这些发现强调了翼型几何形状在影响气动性能方面发挥的重要作用,并为风力涡轮机叶片的最佳设计参数提供了见解,特别是突出了S811和S818翼型形状的优势。此外,通过紊流动能等高线对尾迹后近尾迹区非定常结构的影响进行了评价。结果表明,当S811和S818翼型被放置在一个横流相比,S809和S814翼型湍流动能的减少。这表明,这些翼型的旋涡脱落的强度低于S809和S8014翼型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aerodynamic Characteristics Evaluation of S-Series Airfoils
The present study utilizes the commercial software ANSYS-Fluent to explore the influence of the geometry of thick S- S-series airfoil on the near-wake region. Four different S-series airfoils, namely S809, S811, S814, and S818, were investigated at a wide range of angles of attack, which were varied from 0 degrees to 20 degrees with an increment of 2 degrees and at a Reynolds number based on chord length Re = 1x106. Analysis of the resultant data revealed that the aerodynamic performance of the S811 and S818 airfoils superseded that of the S809 and S814 airfoils. To illustrate, at the critical angle of attack, S811 and S818 were observed to possess the maximum lift and minimum drag coefficients. Furthermore, in the range of attack angles between 10 and 16 degrees, these airfoils consistently demonstrated lower drag than the others tested, enhancing overall aerodynamic performance. These findings underscore the significant role played by airfoil geometry in influencing aerodynamic performance and provide insights into optimal design parameters for wind turbine blades, particularly highlighting the advantages of the S811 and S818 airfoil shapes. In addition, the effect of the unsteady structures in the near-wake zone behind the trailing was also evaluated through turbulence kinetic energy contours. The results revealed a decrease in turbulence kinetic energy when the S811 and S818 airfoils were placed in a cross-flow compared to the S809 and S814 airfoils. This indicates that the strength of the vortex shedding of these airfoils is lower than that of the S809 and S8014 airfoils.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LoRa Sensor Node Mounted on Drone for Monitoring Industrial Area Gas Pollution Application of Discrete Wavelet Transform for Condition Monitoring and Fault Detection in Wind Turbine Blades: An Experimental Study Investigating the Effect of Electroplated Coatings on Single-Phase Fluid Flow and Heat Transfer in Microchannel A Static and Dynamic Analysis of A High-Speed Turbo Machine Foundation Effect of ECAP Routes on Mechanical Properties and Microstructure of AA6061-T4 Recycled Chips
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1