通过梯度特征引导局部对比度的微小目标检测方法

Wei Shi;Mingliang Chen;Junchao Zhang
{"title":"通过梯度特征引导局部对比度的微小目标检测方法","authors":"Wei Shi;Mingliang Chen;Junchao Zhang","doi":"10.1109/JMASS.2023.3330014","DOIUrl":null,"url":null,"abstract":"Small and dim target detection is a longstanding challenge in computer vision because of conditions, such as target scale variations and strong clutter. This article provides an innovative and efficient algorithm for detecting small targets. By utilizing a novel approach, our algorithm achieves superior performance in the presence of challenging environmental conditions, it suppresses the background and enhances the target via gradient features guided local contrast (GFLC). To begin, we leverage the gradient properties of the image to mitigate the background noise. Subsequently, local contrast features are utilized to accentuate the target area in the original image. The fusion map is then computed by combining the above features. Finally, the targets are efficiently extracted from the fusion map via segmentation. The findings indicate that the algorithm we presented achieves outstanding accuracy in detecting targets in images with intricate backgrounds and low contrast, and it effectively suppresses background noise.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"5 1","pages":"27-32"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dim and Small Target Detection Method via Gradient Features Guided Local Contrast\",\"authors\":\"Wei Shi;Mingliang Chen;Junchao Zhang\",\"doi\":\"10.1109/JMASS.2023.3330014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Small and dim target detection is a longstanding challenge in computer vision because of conditions, such as target scale variations and strong clutter. This article provides an innovative and efficient algorithm for detecting small targets. By utilizing a novel approach, our algorithm achieves superior performance in the presence of challenging environmental conditions, it suppresses the background and enhances the target via gradient features guided local contrast (GFLC). To begin, we leverage the gradient properties of the image to mitigate the background noise. Subsequently, local contrast features are utilized to accentuate the target area in the original image. The fusion map is then computed by combining the above features. Finally, the targets are efficiently extracted from the fusion map via segmentation. The findings indicate that the algorithm we presented achieves outstanding accuracy in detecting targets in images with intricate backgrounds and low contrast, and it effectively suppresses background noise.\",\"PeriodicalId\":100624,\"journal\":{\"name\":\"IEEE Journal on Miniaturization for Air and Space Systems\",\"volume\":\"5 1\",\"pages\":\"27-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Miniaturization for Air and Space Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10306281/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Miniaturization for Air and Space Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10306281/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于受到目标尺度变化和强烈杂波等条件的影响,小型和昏暗目标的检测是计算机视觉领域的一项长期挑战。本文为检测小型目标提供了一种创新而高效的算法。通过使用一种新颖的方法,我们的算法在具有挑战性的环境条件下实现了卓越的性能,它抑制了背景,并通过梯度特征引导的局部对比度(GFLC)增强了目标。首先,我们利用图像的梯度特性来减轻背景噪音。随后,利用局部对比度特征来突出原始图像中的目标区域。然后结合上述特征计算融合图。最后,通过分割从融合图中高效提取目标。研究结果表明,我们提出的算法在背景复杂、对比度低的图像中检测目标的准确性非常高,而且能有效抑制背景噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dim and Small Target Detection Method via Gradient Features Guided Local Contrast
Small and dim target detection is a longstanding challenge in computer vision because of conditions, such as target scale variations and strong clutter. This article provides an innovative and efficient algorithm for detecting small targets. By utilizing a novel approach, our algorithm achieves superior performance in the presence of challenging environmental conditions, it suppresses the background and enhances the target via gradient features guided local contrast (GFLC). To begin, we leverage the gradient properties of the image to mitigate the background noise. Subsequently, local contrast features are utilized to accentuate the target area in the original image. The fusion map is then computed by combining the above features. Finally, the targets are efficiently extracted from the fusion map via segmentation. The findings indicate that the algorithm we presented achieves outstanding accuracy in detecting targets in images with intricate backgrounds and low contrast, and it effectively suppresses background noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Journal on Miniaturization for Air and Space Systems Vol. 5 Table of Contents Front Cover The Journal of Miniaturized Air and Space Systems Broadband Miniaturized Antenna Based on Enhanced Magnetic Field Convergence in UAV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1