椭圆船域和速度障碍相结合的多船相遇态势分析

Zhaoxi Cheng, Pengfei Chen, Junmin Mou, Linying Chen
{"title":"椭圆船域和速度障碍相结合的多船相遇态势分析","authors":"Zhaoxi Cheng, Pengfei Chen, Junmin Mou, Linying Chen","doi":"10.12716/1001.17.04.16","DOIUrl":null,"url":null,"abstract":": With economic globalization, ships tend to be larger and faster, and the volume of maritime traffic is increasing. S hips sailing in waters with dense traffic flow are easy to fall into compli cated multi-ship encounter situations and have a high risk of collision. Thus, it is crucial to conduct risk analysis in such situations. In this paper, a modified collision analysis method for detecting dangerous multi-ship encounters in ports and waterwa ys is proposed. The velocity obstacle algorithm is utilized to detect encounters. The model of the elliptic ship domain was integrated into the algorithm as the criteria. The Boolean operation was also used in the multi-ship encounter. A case study is conducted to illustrate the efficacy of the improved model, and a comparison between the existing method and the formal model is also performed. The results indicate that with the integration of the ship domain, the proposed method can effectively detect the encounters of multiple ships which are dangerous to collide.","PeriodicalId":46009,"journal":{"name":"TransNav-International Journal on Marine Navigation and Safety of Sea Transportation","volume":"16 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-ship Encounter Situation Analysis with the Integration of Elliptical Ship Domains and Velocity Obstacles\",\"authors\":\"Zhaoxi Cheng, Pengfei Chen, Junmin Mou, Linying Chen\",\"doi\":\"10.12716/1001.17.04.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": With economic globalization, ships tend to be larger and faster, and the volume of maritime traffic is increasing. S hips sailing in waters with dense traffic flow are easy to fall into compli cated multi-ship encounter situations and have a high risk of collision. Thus, it is crucial to conduct risk analysis in such situations. In this paper, a modified collision analysis method for detecting dangerous multi-ship encounters in ports and waterwa ys is proposed. The velocity obstacle algorithm is utilized to detect encounters. The model of the elliptic ship domain was integrated into the algorithm as the criteria. The Boolean operation was also used in the multi-ship encounter. A case study is conducted to illustrate the efficacy of the improved model, and a comparison between the existing method and the formal model is also performed. The results indicate that with the integration of the ship domain, the proposed method can effectively detect the encounters of multiple ships which are dangerous to collide.\",\"PeriodicalId\":46009,\"journal\":{\"name\":\"TransNav-International Journal on Marine Navigation and Safety of Sea Transportation\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TransNav-International Journal on Marine Navigation and Safety of Sea Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12716/1001.17.04.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TransNav-International Journal on Marine Navigation and Safety of Sea Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12716/1001.17.04.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-ship Encounter Situation Analysis with the Integration of Elliptical Ship Domains and Velocity Obstacles
: With economic globalization, ships tend to be larger and faster, and the volume of maritime traffic is increasing. S hips sailing in waters with dense traffic flow are easy to fall into compli cated multi-ship encounter situations and have a high risk of collision. Thus, it is crucial to conduct risk analysis in such situations. In this paper, a modified collision analysis method for detecting dangerous multi-ship encounters in ports and waterwa ys is proposed. The velocity obstacle algorithm is utilized to detect encounters. The model of the elliptic ship domain was integrated into the algorithm as the criteria. The Boolean operation was also used in the multi-ship encounter. A case study is conducted to illustrate the efficacy of the improved model, and a comparison between the existing method and the formal model is also performed. The results indicate that with the integration of the ship domain, the proposed method can effectively detect the encounters of multiple ships which are dangerous to collide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
16.70%
发文量
22
审稿时长
40 weeks
期刊最新文献
The Concept of Determining the Ship’s Route Based on the Capability Plots The DIA-Method for Navigational Integrity Impact of Late and Early Fuel Injection on Main Engine Efficiency and Exhaust Gas Emissions Seeking the Best Practices of Assessment in Maritime Simulator Training Digital Transformation in Ferry Shipping – Case Study in the Baltic Sea Region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1