基于H2和H∞综合的汽车主动悬架自适应神经模糊控制

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Machines Pub Date : 2023-11-14 DOI:10.3390/machines11111022
Jaffar Esmaeili, Ahmad Akbari, Arash Farnam, Nasser Azad, Guillaume Crevecoeur
{"title":"基于H2和H∞综合的汽车主动悬架自适应神经模糊控制","authors":"Jaffar Esmaeili, Ahmad Akbari, Arash Farnam, Nasser Azad, Guillaume Crevecoeur","doi":"10.3390/machines11111022","DOIUrl":null,"url":null,"abstract":"This paper addresses the issue of a road-type-adaptive control strategy aimed at enhancing suspension performance. H2 synthesis is employed for modeling road irregularities as impulses or white noise, minimizing the root mean square (RMS) of performance outputs for these specific road types. It should be noted, however, that this approach may lead to suboptimal performance when applied to other road profiles. In contrast, the H∞ controller is employed to minimize the RMS of performance outputs under worst-case road irregularities, taking a conservative stance that ensures robustness across all road profiles. To leverage the advantages of both controllers and achieve overall improved suspension performance, automatic switching between these controllers is recommended based on the identified road type. To implement this adaptive switching mechanism, manual switching is performed, gathering input–output data from the controllers. These data are subsequently employed for training an Adaptive Neuro-Fuzzy Inference System (ANFIS) network. This elegant approach contributes significantly to the optimization of suspension performance. The simulation results employing this novel ANFIS-based controller demonstrate substantial performance enhancements compared to both the H2 and H∞ controllers. Notably, the ANFIS-based controller exhibits a remarkable 62% improvement in vehicle body comfort and a significant 57% enhancement in ride safety compared to passive suspension, highlighting its potential for superior suspension performance across diverse road conditions.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"18 4","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Neuro-Fuzzy Control of Active Vehicle Suspension Based on H2 and H∞ Synthesis\",\"authors\":\"Jaffar Esmaeili, Ahmad Akbari, Arash Farnam, Nasser Azad, Guillaume Crevecoeur\",\"doi\":\"10.3390/machines11111022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the issue of a road-type-adaptive control strategy aimed at enhancing suspension performance. H2 synthesis is employed for modeling road irregularities as impulses or white noise, minimizing the root mean square (RMS) of performance outputs for these specific road types. It should be noted, however, that this approach may lead to suboptimal performance when applied to other road profiles. In contrast, the H∞ controller is employed to minimize the RMS of performance outputs under worst-case road irregularities, taking a conservative stance that ensures robustness across all road profiles. To leverage the advantages of both controllers and achieve overall improved suspension performance, automatic switching between these controllers is recommended based on the identified road type. To implement this adaptive switching mechanism, manual switching is performed, gathering input–output data from the controllers. These data are subsequently employed for training an Adaptive Neuro-Fuzzy Inference System (ANFIS) network. This elegant approach contributes significantly to the optimization of suspension performance. The simulation results employing this novel ANFIS-based controller demonstrate substantial performance enhancements compared to both the H2 and H∞ controllers. Notably, the ANFIS-based controller exhibits a remarkable 62% improvement in vehicle body comfort and a significant 57% enhancement in ride safety compared to passive suspension, highlighting its potential for superior suspension performance across diverse road conditions.\",\"PeriodicalId\":48519,\"journal\":{\"name\":\"Machines\",\"volume\":\"18 4\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/machines11111022\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/machines11111022","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种旨在提高悬架性能的道路型自适应控制策略。H2合成用于将道路不规则性建模为脉冲或白噪声,最小化这些特定道路类型的性能输出的均方根(RMS)。然而,应该注意的是,当应用于其他道路轮廓时,这种方法可能导致次优性能。相比之下,H∞控制器用于最小化最坏情况下道路不规则情况下性能输出的均方根,采取保守立场,确保所有道路轮廓的鲁棒性。为了充分利用这两种控制器的优势并实现整体悬挂性能的改进,建议根据已识别的道路类型在这两种控制器之间自动切换。为了实现这种自适应开关机制,执行手动开关,从控制器收集输入输出数据。这些数据随后被用于训练自适应神经模糊推理系统(ANFIS)网络。这种优雅的方法有助于悬架性能的优化。仿真结果表明,与H2和H∞控制器相比,采用这种新颖的基于anfiss的控制器的性能有了实质性的提高。值得注意的是,与被动悬架相比,基于anfiss的控制器在车身舒适度方面提高了62%,在乘坐安全性方面提高了57%,突出了其在各种道路条件下卓越悬架性能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Neuro-Fuzzy Control of Active Vehicle Suspension Based on H2 and H∞ Synthesis
This paper addresses the issue of a road-type-adaptive control strategy aimed at enhancing suspension performance. H2 synthesis is employed for modeling road irregularities as impulses or white noise, minimizing the root mean square (RMS) of performance outputs for these specific road types. It should be noted, however, that this approach may lead to suboptimal performance when applied to other road profiles. In contrast, the H∞ controller is employed to minimize the RMS of performance outputs under worst-case road irregularities, taking a conservative stance that ensures robustness across all road profiles. To leverage the advantages of both controllers and achieve overall improved suspension performance, automatic switching between these controllers is recommended based on the identified road type. To implement this adaptive switching mechanism, manual switching is performed, gathering input–output data from the controllers. These data are subsequently employed for training an Adaptive Neuro-Fuzzy Inference System (ANFIS) network. This elegant approach contributes significantly to the optimization of suspension performance. The simulation results employing this novel ANFIS-based controller demonstrate substantial performance enhancements compared to both the H2 and H∞ controllers. Notably, the ANFIS-based controller exhibits a remarkable 62% improvement in vehicle body comfort and a significant 57% enhancement in ride safety compared to passive suspension, highlighting its potential for superior suspension performance across diverse road conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machines
Machines Multiple-
CiteScore
3.00
自引率
26.90%
发文量
1012
审稿时长
11 weeks
期刊介绍: Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.
期刊最新文献
Investigative Study of the Effect of Damping and Stiffness Nonlinearities on an Electromagnetic Energy Harvester at Low-Frequency Excitations Vibration Research on Centrifugal Loop Dryer Machines Used in Plastic Recycling Processes Novel Design of Variable Stiffness Pneumatic Flexible Shaft Coupling: Determining the Mathematical-Physical Model and Potential Benefits Considerations on the Dynamics of Biofidelic Sensors in the Assessment of Human–Robot Impacts Structural Design with Self-Weight and Inertial Loading Using Simulated Annealing for Non-Gradient Topology Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1