调查银行业客户流失情况:用于数据科学与管理的机器学习方法和可视化应用程序

Pahul Preet Singh , Fahim Islam Anik , Rahul Senapati , Arnav Sinha , Nazmus Sakib , Eklas Hossain
{"title":"调查银行业客户流失情况:用于数据科学与管理的机器学习方法和可视化应用程序","authors":"Pahul Preet Singh ,&nbsp;Fahim Islam Anik ,&nbsp;Rahul Senapati ,&nbsp;Arnav Sinha ,&nbsp;Nazmus Sakib ,&nbsp;Eklas Hossain","doi":"10.1016/j.dsm.2023.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Customer attrition in the banking industry occurs when consumers quit using the goods and services offered by the bank for some time and, after that, end their connection with the bank. Therefore, customer retention is essential in today’s extremely competitive banking market. Additionally, having a solid customer base helps attract new consumers by fostering confidence and a referral from a current clientele. These factors make reducing client attrition a crucial step that banks must pursue. In our research, we aim to examine bank data and forecast which users will most likely discontinue using the bank’s services and become paying customers. We use various machine learning algorithms to analyze the data and show comparative analysis on different evaluation metrics. In addition, we developed a Data Visualization RShiny app for data science and management regarding customer churn analysis. Analyzing this data will help the bank indicate the trend and then try to retain customers on the verge of attrition.</p></div>","PeriodicalId":100353,"journal":{"name":"Data Science and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666764923000401/pdfft?md5=cfc2f4530901aaf2ea8c8c1c0289f259&pid=1-s2.0-S2666764923000401-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigating customer churn in banking: A machine learning approach and visualization app for data science and management\",\"authors\":\"Pahul Preet Singh ,&nbsp;Fahim Islam Anik ,&nbsp;Rahul Senapati ,&nbsp;Arnav Sinha ,&nbsp;Nazmus Sakib ,&nbsp;Eklas Hossain\",\"doi\":\"10.1016/j.dsm.2023.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Customer attrition in the banking industry occurs when consumers quit using the goods and services offered by the bank for some time and, after that, end their connection with the bank. Therefore, customer retention is essential in today’s extremely competitive banking market. Additionally, having a solid customer base helps attract new consumers by fostering confidence and a referral from a current clientele. These factors make reducing client attrition a crucial step that banks must pursue. In our research, we aim to examine bank data and forecast which users will most likely discontinue using the bank’s services and become paying customers. We use various machine learning algorithms to analyze the data and show comparative analysis on different evaluation metrics. In addition, we developed a Data Visualization RShiny app for data science and management regarding customer churn analysis. Analyzing this data will help the bank indicate the trend and then try to retain customers on the verge of attrition.</p></div>\",\"PeriodicalId\":100353,\"journal\":{\"name\":\"Data Science and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666764923000401/pdfft?md5=cfc2f4530901aaf2ea8c8c1c0289f259&pid=1-s2.0-S2666764923000401-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666764923000401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666764923000401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

银行业的客户流失是指消费者在一段时间内不再使用银行提供的商品和服务,继而终止与银行的联系。因此,在当今竞争异常激烈的银行市场中,留住客户至关重要。此外,拥有稳固的客户基础有助于通过培养信心和现有客户的推荐来吸引新的消费者。这些因素使得减少客户流失成为银行必须采取的关键步骤。在我们的研究中,我们旨在研究银行数据,预测哪些用户最有可能不再使用银行服务,而成为付费客户。我们使用各种机器学习算法来分析数据,并对不同的评估指标进行比较分析。此外,我们还开发了一个数据可视化 RShiny 应用程序,用于客户流失分析方面的数据科学和管理。分析这些数据将有助于银行指出趋势,然后设法留住濒临流失的客户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating customer churn in banking: A machine learning approach and visualization app for data science and management

Customer attrition in the banking industry occurs when consumers quit using the goods and services offered by the bank for some time and, after that, end their connection with the bank. Therefore, customer retention is essential in today’s extremely competitive banking market. Additionally, having a solid customer base helps attract new consumers by fostering confidence and a referral from a current clientele. These factors make reducing client attrition a crucial step that banks must pursue. In our research, we aim to examine bank data and forecast which users will most likely discontinue using the bank’s services and become paying customers. We use various machine learning algorithms to analyze the data and show comparative analysis on different evaluation metrics. In addition, we developed a Data Visualization RShiny app for data science and management regarding customer churn analysis. Analyzing this data will help the bank indicate the trend and then try to retain customers on the verge of attrition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
期刊最新文献
Comparative study of IoT- and AI-based computing disease detection approaches Forecast Uncertainties Real-Time Data-Driven Compensation Scheme for Optimal Storage Control Dual-market quantitative trading: The dynamics of liquidity and turnover in financial markets A Model for Predicting Dropout of Higher Education Students Value Realization of Intelligent Emergency Management: Research Framework from Technology Enabling to Value Creation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1