{"title":"水平管道中粘性油-水-砂流动的实验研究:流动模式和压力梯度","authors":"Tarek Ganat","doi":"10.1016/j.petlm.2023.09.005","DOIUrl":null,"url":null,"abstract":"<div><p>Fluid production from unconsolidated reservoirs often leads in sand production, which poses a number of issues. Sand deposition in flowlines can result in significant pressure dips, pipe and facility damage, and obstructions that decrease productivity. More research is needed to understand the movement and deposition of sand in oil–water–sand (O–W–S) fluxes. This article focuses on O–W–S flows in a 6-meter-long horizontal pipe with an inner diameter of 0.0381 m. The study looks at the flow behavior of high viscosity oil–water (O–W), water–sand (W–S), and oil–water–sand (O–W–S) flows. Experiments were carried out at 250 psig pressure in a laboratory flow test facility using various heavy synthetic oils (viscosities ranging from 3500 cP to 7500 cP at 25°C) and tap water. The sand concentration varied from 1% to 10%, with an average sand particle diameter of 145 μm and material density of 2630 kg/m<sup>3</sup>. Water cuts ranged from 0.0 to 1.0. The experimental results revealed a minor change in pressure gradient between (O–W) and (O–W–S) flows. However, increasing the sand concentration in (O–W–S) flow resulted in higher pressure losses. The reduction factor of pressure gradient indicated that the highest decrease in pressure drop occurred at higher superficial oil velocities. Furthermore, a direct relationship was observed between the reduction factor and the decrease in water cut. The results also showed that the minimum required transportation velocity for sand slurry decreased with increasing superficial oil velocity, while the minimum transportation condition increased with higher sand concentration. The comparison between the expected pressure gradient from Bannwart and McKibben et al. and the actual experimental data demonstrated significant accuracy for the oil viscosities and superficial oil velocities used in the study.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 2","pages":"Pages 275-293"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000639/pdfft?md5=03f697400191bab413d488c867e4e0ac&pid=1-s2.0-S2405656123000639-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of viscous oil–water–sand flow in horizontal pipes: Flow patterns and pressure gradient\",\"authors\":\"Tarek Ganat\",\"doi\":\"10.1016/j.petlm.2023.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fluid production from unconsolidated reservoirs often leads in sand production, which poses a number of issues. Sand deposition in flowlines can result in significant pressure dips, pipe and facility damage, and obstructions that decrease productivity. More research is needed to understand the movement and deposition of sand in oil–water–sand (O–W–S) fluxes. This article focuses on O–W–S flows in a 6-meter-long horizontal pipe with an inner diameter of 0.0381 m. The study looks at the flow behavior of high viscosity oil–water (O–W), water–sand (W–S), and oil–water–sand (O–W–S) flows. Experiments were carried out at 250 psig pressure in a laboratory flow test facility using various heavy synthetic oils (viscosities ranging from 3500 cP to 7500 cP at 25°C) and tap water. The sand concentration varied from 1% to 10%, with an average sand particle diameter of 145 μm and material density of 2630 kg/m<sup>3</sup>. Water cuts ranged from 0.0 to 1.0. The experimental results revealed a minor change in pressure gradient between (O–W) and (O–W–S) flows. However, increasing the sand concentration in (O–W–S) flow resulted in higher pressure losses. The reduction factor of pressure gradient indicated that the highest decrease in pressure drop occurred at higher superficial oil velocities. Furthermore, a direct relationship was observed between the reduction factor and the decrease in water cut. The results also showed that the minimum required transportation velocity for sand slurry decreased with increasing superficial oil velocity, while the minimum transportation condition increased with higher sand concentration. The comparison between the expected pressure gradient from Bannwart and McKibben et al. and the actual experimental data demonstrated significant accuracy for the oil viscosities and superficial oil velocities used in the study.</p></div>\",\"PeriodicalId\":37433,\"journal\":{\"name\":\"Petroleum\",\"volume\":\"10 2\",\"pages\":\"Pages 275-293\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405656123000639/pdfft?md5=03f697400191bab413d488c867e4e0ac&pid=1-s2.0-S2405656123000639-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405656123000639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656123000639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental investigation of viscous oil–water–sand flow in horizontal pipes: Flow patterns and pressure gradient
Fluid production from unconsolidated reservoirs often leads in sand production, which poses a number of issues. Sand deposition in flowlines can result in significant pressure dips, pipe and facility damage, and obstructions that decrease productivity. More research is needed to understand the movement and deposition of sand in oil–water–sand (O–W–S) fluxes. This article focuses on O–W–S flows in a 6-meter-long horizontal pipe with an inner diameter of 0.0381 m. The study looks at the flow behavior of high viscosity oil–water (O–W), water–sand (W–S), and oil–water–sand (O–W–S) flows. Experiments were carried out at 250 psig pressure in a laboratory flow test facility using various heavy synthetic oils (viscosities ranging from 3500 cP to 7500 cP at 25°C) and tap water. The sand concentration varied from 1% to 10%, with an average sand particle diameter of 145 μm and material density of 2630 kg/m3. Water cuts ranged from 0.0 to 1.0. The experimental results revealed a minor change in pressure gradient between (O–W) and (O–W–S) flows. However, increasing the sand concentration in (O–W–S) flow resulted in higher pressure losses. The reduction factor of pressure gradient indicated that the highest decrease in pressure drop occurred at higher superficial oil velocities. Furthermore, a direct relationship was observed between the reduction factor and the decrease in water cut. The results also showed that the minimum required transportation velocity for sand slurry decreased with increasing superficial oil velocity, while the minimum transportation condition increased with higher sand concentration. The comparison between the expected pressure gradient from Bannwart and McKibben et al. and the actual experimental data demonstrated significant accuracy for the oil viscosities and superficial oil velocities used in the study.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing