{"title":"相似马氏体焊缝在蠕变、疲劳和蠕变-疲劳载荷下的损伤评估","authors":"Thorben Bender, Andreas Klenk, Stefan Weihe","doi":"10.1115/1.4062396","DOIUrl":null,"url":null,"abstract":"Abstract For the assessment of welds under high-temperature conditions in the creep or creep-fatigue regimes, the knowledge of the damage location and its temporal evolution is of high importance. The local failure behavior of weld joints is not reflected in design guidelines using weld reduction factors or in typical assessment approaches. The evaluation of local strains and stresses in the heat affected zone (HAZ) is essential for a more detailed consideration of weld behavior and has a high potential for improvement of design and inspection guidelines. In this paper, an overview of current developments in the assessment of weld joints is given. Uni-axial creep, component tests, low cycle fatigue (LCF), and creep-fatigue experiments with base material, weld joints and microstructure simulated HAZ material are presented. The use of test results of microstructure simulated HAZ material allows the parameter identification of numerical material models for the HAZ and improves the simulation of the local stress and strain behavior of weld joints. Two assessment methods, one for creep and one for fatigue/creep-fatigue were presented, based on the local behavior determined by the numerical simulations. The assessment approach for pure creep loads was validated using several uni-axial creep tests and two component tests. The approach for the fatigue/creep-fatigue loads is still in the developmental stage but the first results were presented and further areas for improvement were identified.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":"12 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage Assessment of Similar Martensitic Welds Under Creep, Fatigue, and Creep-Fatigue Loading\",\"authors\":\"Thorben Bender, Andreas Klenk, Stefan Weihe\",\"doi\":\"10.1115/1.4062396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For the assessment of welds under high-temperature conditions in the creep or creep-fatigue regimes, the knowledge of the damage location and its temporal evolution is of high importance. The local failure behavior of weld joints is not reflected in design guidelines using weld reduction factors or in typical assessment approaches. The evaluation of local strains and stresses in the heat affected zone (HAZ) is essential for a more detailed consideration of weld behavior and has a high potential for improvement of design and inspection guidelines. In this paper, an overview of current developments in the assessment of weld joints is given. Uni-axial creep, component tests, low cycle fatigue (LCF), and creep-fatigue experiments with base material, weld joints and microstructure simulated HAZ material are presented. The use of test results of microstructure simulated HAZ material allows the parameter identification of numerical material models for the HAZ and improves the simulation of the local stress and strain behavior of weld joints. Two assessment methods, one for creep and one for fatigue/creep-fatigue were presented, based on the local behavior determined by the numerical simulations. The assessment approach for pure creep loads was validated using several uni-axial creep tests and two component tests. The approach for the fatigue/creep-fatigue loads is still in the developmental stage but the first results were presented and further areas for improvement were identified.\",\"PeriodicalId\":50080,\"journal\":{\"name\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062396\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062396","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Damage Assessment of Similar Martensitic Welds Under Creep, Fatigue, and Creep-Fatigue Loading
Abstract For the assessment of welds under high-temperature conditions in the creep or creep-fatigue regimes, the knowledge of the damage location and its temporal evolution is of high importance. The local failure behavior of weld joints is not reflected in design guidelines using weld reduction factors or in typical assessment approaches. The evaluation of local strains and stresses in the heat affected zone (HAZ) is essential for a more detailed consideration of weld behavior and has a high potential for improvement of design and inspection guidelines. In this paper, an overview of current developments in the assessment of weld joints is given. Uni-axial creep, component tests, low cycle fatigue (LCF), and creep-fatigue experiments with base material, weld joints and microstructure simulated HAZ material are presented. The use of test results of microstructure simulated HAZ material allows the parameter identification of numerical material models for the HAZ and improves the simulation of the local stress and strain behavior of weld joints. Two assessment methods, one for creep and one for fatigue/creep-fatigue were presented, based on the local behavior determined by the numerical simulations. The assessment approach for pure creep loads was validated using several uni-axial creep tests and two component tests. The approach for the fatigue/creep-fatigue loads is still in the developmental stage but the first results were presented and further areas for improvement were identified.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.