{"title":"白术叶提取物制备的Pluronic f -127包被二氧化钛纳米颗粒的合成及抗氧化、抗菌和抗癌性能","authors":"Riyad A. Almaimani","doi":"10.1515/gps-2023-0100","DOIUrl":null,"url":null,"abstract":"Abstract Globally, nanotechnology is generating significant interest because of its promise in a wide range of industries. The most commonly used nanoparticles are titanium dioxide nanoparticles (PF-127 coated TiO 2 NPs), which can be formulated with physical, chemical, and environmental factors. The establishment of an economical and environmentally beneficial method for its fabrication is due to increasing concerns about human health impacts. In this exploration, green Pluronic F-127 (PF-127) coated TiO 2 NPs using leaf extracts of Atractylodes macrocephala have been formulated and studied through various methods. PF-127 coated TiO 2 NPs were 60 nm large and a polygonal rutile-type crystalline structure was observed. Moreover, the NPs’ antimicrobial capacity against several pathogens was investigated. The cytotoxicity of the NPs against HEp-2, KB, and Vero cell lines was assessed using the MTT test. Increased antimicrobial potential of PF-127 coated TiO 2 NPs against several pathogens was noted. Furthermore, NPs displayed remarkable antioxidant activity, which increased with concentration. The NPs exhibited significant cytotoxic effects against HEp-2 and KB cell lines but failed to demonstrate toxicity against Vero cells. This is indicative of their cytotoxic potential against cancer cell lines and non-toxic nature towards healthy cells. This indicates that PF-127 coated TiO 2 NPs possess beneficial antimicrobial and antitumor properties.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of Pluronic F-127-coated titanium dioxide nanoparticles synthesized from extracts of <i>Atractylodes macrocephala</i> leaf for antioxidant, antimicrobial, and anticancer properties\",\"authors\":\"Riyad A. Almaimani\",\"doi\":\"10.1515/gps-2023-0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Globally, nanotechnology is generating significant interest because of its promise in a wide range of industries. The most commonly used nanoparticles are titanium dioxide nanoparticles (PF-127 coated TiO 2 NPs), which can be formulated with physical, chemical, and environmental factors. The establishment of an economical and environmentally beneficial method for its fabrication is due to increasing concerns about human health impacts. In this exploration, green Pluronic F-127 (PF-127) coated TiO 2 NPs using leaf extracts of Atractylodes macrocephala have been formulated and studied through various methods. PF-127 coated TiO 2 NPs were 60 nm large and a polygonal rutile-type crystalline structure was observed. Moreover, the NPs’ antimicrobial capacity against several pathogens was investigated. The cytotoxicity of the NPs against HEp-2, KB, and Vero cell lines was assessed using the MTT test. Increased antimicrobial potential of PF-127 coated TiO 2 NPs against several pathogens was noted. Furthermore, NPs displayed remarkable antioxidant activity, which increased with concentration. The NPs exhibited significant cytotoxic effects against HEp-2 and KB cell lines but failed to demonstrate toxicity against Vero cells. This is indicative of their cytotoxic potential against cancer cell lines and non-toxic nature towards healthy cells. This indicates that PF-127 coated TiO 2 NPs possess beneficial antimicrobial and antitumor properties.\",\"PeriodicalId\":12758,\"journal\":{\"name\":\"Green Processing and Synthesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Processing and Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gps-2023-0100\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Processing and Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gps-2023-0100","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis and characterization of Pluronic F-127-coated titanium dioxide nanoparticles synthesized from extracts of Atractylodes macrocephala leaf for antioxidant, antimicrobial, and anticancer properties
Abstract Globally, nanotechnology is generating significant interest because of its promise in a wide range of industries. The most commonly used nanoparticles are titanium dioxide nanoparticles (PF-127 coated TiO 2 NPs), which can be formulated with physical, chemical, and environmental factors. The establishment of an economical and environmentally beneficial method for its fabrication is due to increasing concerns about human health impacts. In this exploration, green Pluronic F-127 (PF-127) coated TiO 2 NPs using leaf extracts of Atractylodes macrocephala have been formulated and studied through various methods. PF-127 coated TiO 2 NPs were 60 nm large and a polygonal rutile-type crystalline structure was observed. Moreover, the NPs’ antimicrobial capacity against several pathogens was investigated. The cytotoxicity of the NPs against HEp-2, KB, and Vero cell lines was assessed using the MTT test. Increased antimicrobial potential of PF-127 coated TiO 2 NPs against several pathogens was noted. Furthermore, NPs displayed remarkable antioxidant activity, which increased with concentration. The NPs exhibited significant cytotoxic effects against HEp-2 and KB cell lines but failed to demonstrate toxicity against Vero cells. This is indicative of their cytotoxic potential against cancer cell lines and non-toxic nature towards healthy cells. This indicates that PF-127 coated TiO 2 NPs possess beneficial antimicrobial and antitumor properties.
期刊介绍:
Green Processing and Synthesis is a bimonthly, peer-reviewed journal that provides up-to-date research both on fundamental as well as applied aspects of innovative green process development and chemical synthesis, giving an appropriate share to industrial views. The contributions are cutting edge, high-impact, authoritative, and provide both pros and cons of potential technologies. Green Processing and Synthesis provides a platform for scientists and engineers, especially chemists and chemical engineers, but is also open for interdisciplinary research from other areas such as physics, materials science, or catalysis.