芳脂环共聚亚胺与烷基化月脱石的组成

Maira Umerzakova, Talkybek Jumadilov, Ruslan Kondaurov, Rakhima Sarieva
{"title":"芳脂环共聚亚胺与烷基化月脱石的组成","authors":"Maira Umerzakova, Talkybek Jumadilov, Ruslan Kondaurov, Rakhima Sarieva","doi":"10.23939/chcht17.03.601","DOIUrl":null,"url":null,"abstract":"The results of studies on the preparation and study of the properties of composite materials based on compositions of arylalicyclic copolyimide and alkylated montmorillonite (AMM) modified with polyethylene glycol to increase the affinity of a natural mineral to polymer matrix are presented in the work. It was found that an increase in the compatibility of composition’s components is due to the addition to copolyimide solution of previously prepared mixture of alkylated montmorillonite in 5 % and 2 % polyethylene glycol solution in methylpyrrolidone. Based on IR-spectroscopy of the obtained mixtures and literature data, an assumption about specified composition mechanism was made. Compounds of copolyimide compositions with modified montmorillonite were determined. Found that the total content of alkylated montmorillonite and polyethylene glycol should not exceed 12.5 wt. % in the case of copolyimide – 1 wt. % and in case of copolyimide-2 – 4 wt. %. The optimal conditions for obtaining on their basis transparent composite films with a smooth surface by a mechanical mixing method are found. Their basic thermodestructive and mechanical properties were determined. It was shown that the materials have high thermodestructive and strength properties: the temperature of decomposition onset is 409-421°C, the tensile strength is in the range of 140-168 MPa. The best thermodestructive properties and tensile strength are possessed by films obtained from ternary mixtures of the initial composition 87.5 SPI1 + 7 PEG + 5.5 AMM and 97 SPI2 + 2 PEG + 1 AMM, while the elasticity of the material remained at an acceptable level.","PeriodicalId":9762,"journal":{"name":"Chemistry and Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compositions of Arylalicyclic Copolyimide with Alkylated Monthmorillonite\",\"authors\":\"Maira Umerzakova, Talkybek Jumadilov, Ruslan Kondaurov, Rakhima Sarieva\",\"doi\":\"10.23939/chcht17.03.601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The results of studies on the preparation and study of the properties of composite materials based on compositions of arylalicyclic copolyimide and alkylated montmorillonite (AMM) modified with polyethylene glycol to increase the affinity of a natural mineral to polymer matrix are presented in the work. It was found that an increase in the compatibility of composition’s components is due to the addition to copolyimide solution of previously prepared mixture of alkylated montmorillonite in 5 % and 2 % polyethylene glycol solution in methylpyrrolidone. Based on IR-spectroscopy of the obtained mixtures and literature data, an assumption about specified composition mechanism was made. Compounds of copolyimide compositions with modified montmorillonite were determined. Found that the total content of alkylated montmorillonite and polyethylene glycol should not exceed 12.5 wt. % in the case of copolyimide – 1 wt. % and in case of copolyimide-2 – 4 wt. %. The optimal conditions for obtaining on their basis transparent composite films with a smooth surface by a mechanical mixing method are found. Their basic thermodestructive and mechanical properties were determined. It was shown that the materials have high thermodestructive and strength properties: the temperature of decomposition onset is 409-421°C, the tensile strength is in the range of 140-168 MPa. The best thermodestructive properties and tensile strength are possessed by films obtained from ternary mixtures of the initial composition 87.5 SPI1 + 7 PEG + 5.5 AMM and 97 SPI2 + 2 PEG + 1 AMM, while the elasticity of the material remained at an acceptable level.\",\"PeriodicalId\":9762,\"journal\":{\"name\":\"Chemistry and Chemical Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry and Chemical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/chcht17.03.601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Chemical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/chcht17.03.601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了芳脂环共聚物和烷基化蒙脱土(AMM)经聚乙二醇改性的复合材料的制备和性能研究结果,以提高天然矿物对聚合物基体的亲和力。结果表明,将先前制备的烷基化蒙脱土(5%)和聚乙二醇(2%)混合溶液(甲基吡罗烷酮)加入到共亚胺溶液中,可以提高组合物各组分的相容性。根据所得混合物的红外光谱和文献数据,提出了特定组成机理的假设。测定了改性蒙脱土的共聚亚胺组成物。发现烷基化蒙脱土和聚乙二醇的总含量在共聚物- 1 wt. %和共聚物-2 - 4 wt. %的情况下不应超过12.5 wt. %。找到了在其基础上用机械混合法制备表面光滑透明复合薄膜的最佳条件。测定了它们的基本热破坏性能和力学性能。结果表明,该材料具有较高的热破坏性能和强度,分解起始温度为409 ~ 421℃,抗拉强度为140 ~ 168 MPa。由初始成分87.5 SPI1 + 7 PEG + 5.5 AMM和97 SPI2 + 2 PEG + 1 AMM组成的三元混合物获得的薄膜具有最佳的热破坏性能和抗拉强度,而材料的弹性保持在可接受的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compositions of Arylalicyclic Copolyimide with Alkylated Monthmorillonite
The results of studies on the preparation and study of the properties of composite materials based on compositions of arylalicyclic copolyimide and alkylated montmorillonite (AMM) modified with polyethylene glycol to increase the affinity of a natural mineral to polymer matrix are presented in the work. It was found that an increase in the compatibility of composition’s components is due to the addition to copolyimide solution of previously prepared mixture of alkylated montmorillonite in 5 % and 2 % polyethylene glycol solution in methylpyrrolidone. Based on IR-spectroscopy of the obtained mixtures and literature data, an assumption about specified composition mechanism was made. Compounds of copolyimide compositions with modified montmorillonite were determined. Found that the total content of alkylated montmorillonite and polyethylene glycol should not exceed 12.5 wt. % in the case of copolyimide – 1 wt. % and in case of copolyimide-2 – 4 wt. %. The optimal conditions for obtaining on their basis transparent composite films with a smooth surface by a mechanical mixing method are found. Their basic thermodestructive and mechanical properties were determined. It was shown that the materials have high thermodestructive and strength properties: the temperature of decomposition onset is 409-421°C, the tensile strength is in the range of 140-168 MPa. The best thermodestructive properties and tensile strength are possessed by films obtained from ternary mixtures of the initial composition 87.5 SPI1 + 7 PEG + 5.5 AMM and 97 SPI2 + 2 PEG + 1 AMM, while the elasticity of the material remained at an acceptable level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Infrared Spectroscopy and X-Ray Powder Diffractometry for Assessment of the Qualitative Composition of Components in a Pharmaceutical Formulation Photocatalytic Degradation of Polyethylene Plastics Using MgAl2O4 Nanoparticles Prepared by Solid State Method Peculiarities of Phase Formation in Sol-Gel Powders of the СaО–ZrO2–Nb2O5–SiO2 System Method for Obtaining Isothermal Diagrams of the Liquid - Vapor Equilibrium for the System as Dimethyl Zinc - Dimethyl Telluride Effects of Brownian Motions and Fractal Structure of Nanoparticles on Natural Convection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1