{"title":"用Fe3+改性天然丝光沸石优化棕榈酸裂解制备航空燃料化合物","authors":"Abdulloh Abdulloh, Ulfa Rahmah, Ahmadi Jaya Permana, Achmad Affan Mahdy, Titah Aldila Budiastanti, Mochamad Zakki Fahmi","doi":"10.23939/chcht17.03.625","DOIUrl":null,"url":null,"abstract":"Natural mordenite from Turen village Malang district Indonesia has been modified to Fe3+-mordenite for heterogenous catalyst in cracking process of palmitic acid to produce Aviation fuel components. Cation exchange method has been used in mordenite modification using FeCl3. The Fe3+-mordenite was characterized by structure analysis, Fe content, Si/Al ratio, number of acid sites, pore size, pore volume, and surface area. The catalytic performances, conversion, and selectivity were measured at 583 K by GC-MS for 1, 2, and 3 hours. The high content of Fe in mordenite has larger Brønsted-Lewis’s acid site, pore volume and surface area than the natural mordenite. The crystal structure of Fe3+-mordenite is still the same with natural mordenite. The Fe3+-mordenite also has a smaller pore size than the natural mordenite. In cracking process of palmitic acid, Fe3+-mordenite performed 61.94 % of conversion and 92.90 %, which produced aviation fuel compounds, namely alkanes, alkene, cycloalkane and aromatic.","PeriodicalId":9762,"journal":{"name":"Chemistry and Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cracking Optimization of Palmitic Acid Using Fe3+ Modified Natural Mordenite for Producing Aviation Fuel Compounds\",\"authors\":\"Abdulloh Abdulloh, Ulfa Rahmah, Ahmadi Jaya Permana, Achmad Affan Mahdy, Titah Aldila Budiastanti, Mochamad Zakki Fahmi\",\"doi\":\"10.23939/chcht17.03.625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural mordenite from Turen village Malang district Indonesia has been modified to Fe3+-mordenite for heterogenous catalyst in cracking process of palmitic acid to produce Aviation fuel components. Cation exchange method has been used in mordenite modification using FeCl3. The Fe3+-mordenite was characterized by structure analysis, Fe content, Si/Al ratio, number of acid sites, pore size, pore volume, and surface area. The catalytic performances, conversion, and selectivity were measured at 583 K by GC-MS for 1, 2, and 3 hours. The high content of Fe in mordenite has larger Brønsted-Lewis’s acid site, pore volume and surface area than the natural mordenite. The crystal structure of Fe3+-mordenite is still the same with natural mordenite. The Fe3+-mordenite also has a smaller pore size than the natural mordenite. In cracking process of palmitic acid, Fe3+-mordenite performed 61.94 % of conversion and 92.90 %, which produced aviation fuel compounds, namely alkanes, alkene, cycloalkane and aromatic.\",\"PeriodicalId\":9762,\"journal\":{\"name\":\"Chemistry and Chemical Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry and Chemical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/chcht17.03.625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Chemical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/chcht17.03.625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cracking Optimization of Palmitic Acid Using Fe3+ Modified Natural Mordenite for Producing Aviation Fuel Compounds
Natural mordenite from Turen village Malang district Indonesia has been modified to Fe3+-mordenite for heterogenous catalyst in cracking process of palmitic acid to produce Aviation fuel components. Cation exchange method has been used in mordenite modification using FeCl3. The Fe3+-mordenite was characterized by structure analysis, Fe content, Si/Al ratio, number of acid sites, pore size, pore volume, and surface area. The catalytic performances, conversion, and selectivity were measured at 583 K by GC-MS for 1, 2, and 3 hours. The high content of Fe in mordenite has larger Brønsted-Lewis’s acid site, pore volume and surface area than the natural mordenite. The crystal structure of Fe3+-mordenite is still the same with natural mordenite. The Fe3+-mordenite also has a smaller pore size than the natural mordenite. In cracking process of palmitic acid, Fe3+-mordenite performed 61.94 % of conversion and 92.90 %, which produced aviation fuel compounds, namely alkanes, alkene, cycloalkane and aromatic.