{"title":"一种相同概率分布的深度异常检测方法及其在滚动轴承中的应用","authors":"Yuxiang Kang, Guo Chen, Wenping Pan, Hao Wang, Xunkai Wei","doi":"10.1115/1.4063608","DOIUrl":null,"url":null,"abstract":"Abstract An innovative deep-learning-based model, namely, deep anomaly detection with the same probability distribution (DADSPD) is proposed to improve the accuracy of anomaly detection (AD) of rolling bearings driven only by normal data. First, the main framework of feature extraction based on a residual network was established, and a three-layer encoder structure was used to extract multidimensional features. Second, a new loss function based on the same probability distribution is designed, and the function of its probability distribution is to complete the training of the model by calculating the similarity between the outputs. Subsequently, the vibration data were preprocessed using wavelet and envelope analysis, and the processed data are converted into two-dimensional image signals and used as the input of the DADSPD. Finally, the model is verified on three sets of run-to-failure experimental datasets of rolling bearing. The results demonstrate that the proposed DADSPD model reaches more than 99%, which indicates that the DADSPD model has a high fault early warning and AD capability.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"65 3","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Anomaly Detection With Same Probability Distribution And Its Application In Rolling Bearing\",\"authors\":\"Yuxiang Kang, Guo Chen, Wenping Pan, Hao Wang, Xunkai Wei\",\"doi\":\"10.1115/1.4063608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An innovative deep-learning-based model, namely, deep anomaly detection with the same probability distribution (DADSPD) is proposed to improve the accuracy of anomaly detection (AD) of rolling bearings driven only by normal data. First, the main framework of feature extraction based on a residual network was established, and a three-layer encoder structure was used to extract multidimensional features. Second, a new loss function based on the same probability distribution is designed, and the function of its probability distribution is to complete the training of the model by calculating the similarity between the outputs. Subsequently, the vibration data were preprocessed using wavelet and envelope analysis, and the processed data are converted into two-dimensional image signals and used as the input of the DADSPD. Finally, the model is verified on three sets of run-to-failure experimental datasets of rolling bearing. The results demonstrate that the proposed DADSPD model reaches more than 99%, which indicates that the DADSPD model has a high fault early warning and AD capability.\",\"PeriodicalId\":54846,\"journal\":{\"name\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"volume\":\"65 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063608\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063608","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A Deep Anomaly Detection With Same Probability Distribution And Its Application In Rolling Bearing
Abstract An innovative deep-learning-based model, namely, deep anomaly detection with the same probability distribution (DADSPD) is proposed to improve the accuracy of anomaly detection (AD) of rolling bearings driven only by normal data. First, the main framework of feature extraction based on a residual network was established, and a three-layer encoder structure was used to extract multidimensional features. Second, a new loss function based on the same probability distribution is designed, and the function of its probability distribution is to complete the training of the model by calculating the similarity between the outputs. Subsequently, the vibration data were preprocessed using wavelet and envelope analysis, and the processed data are converted into two-dimensional image signals and used as the input of the DADSPD. Finally, the model is verified on three sets of run-to-failure experimental datasets of rolling bearing. The results demonstrate that the proposed DADSPD model reaches more than 99%, which indicates that the DADSPD model has a high fault early warning and AD capability.
期刊介绍:
The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.