使用TensorFlow对象检测API对BISINDO字母表进行分类

Lilis Nur Hayati, Anik Nur Handayani, Wahyu Sakti Gunawan Irianto, Rosa Andrie Asmara, Dolly Indra, Muhammad Fahmi
{"title":"使用TensorFlow对象检测API对BISINDO字母表进行分类","authors":"Lilis Nur Hayati, Anik Nur Handayani, Wahyu Sakti Gunawan Irianto, Rosa Andrie Asmara, Dolly Indra, Muhammad Fahmi","doi":"10.33096/ilkom.v15i2.1692.358-364","DOIUrl":null,"url":null,"abstract":"Indonesian Sign Language (BISINDO) is one of the sign languages used in Indonesia. The process of classifying BISINDO can be done by utilizing advances in computer technology such as deep learning. The use of the BISINDO letter classification system with the application of the MobileNet V2 FPNLite SSD model using the TensorFlow object detection API. The purpose of this study is to classify BISINDO letters A-Z and measure the accuracy, precision, recall, and cross-validation performance of the model. The dataset used was 4054 images with a size of consisting of 26 letter classes, which were taken by researchers by applying several research scenarios and limitations. The steps carried out are: dividing the ratio of the simulation dataset 80:20, and applying cross-validation (k-fold = 5). In this study, a real time testing using 2 scenarios was conducted, namely testing with bright light conditions of 500 lux and dim light of 50 lux with an average processing time of 30 frames per second (fps). With a simulation data set ratio of 80:20, 5 iterations were performed, the first iteration yielded a precision result of 0.758 and a recall result of 0.790, and the second iteration yielded a precision result of 0.635 and a recall result of 0.77, then obtained an accuracy score of 0.712, the third iteration provides a recall score of 0.746, the fourth iteration obtains a precision score of 0.713 and a recall score of 0.751, the fifth iteration gives a precision score of 0.742 for a fit score case and the recall score is 0.773. So, the overall average precision score is 0.712 and the overall average recall score is 0.747, indicating that the model built performs very well.","PeriodicalId":33690,"journal":{"name":"Ilkom Jurnal Ilmiah","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifying BISINDO Alphabet using TensorFlow Object Detection API\",\"authors\":\"Lilis Nur Hayati, Anik Nur Handayani, Wahyu Sakti Gunawan Irianto, Rosa Andrie Asmara, Dolly Indra, Muhammad Fahmi\",\"doi\":\"10.33096/ilkom.v15i2.1692.358-364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indonesian Sign Language (BISINDO) is one of the sign languages used in Indonesia. The process of classifying BISINDO can be done by utilizing advances in computer technology such as deep learning. The use of the BISINDO letter classification system with the application of the MobileNet V2 FPNLite SSD model using the TensorFlow object detection API. The purpose of this study is to classify BISINDO letters A-Z and measure the accuracy, precision, recall, and cross-validation performance of the model. The dataset used was 4054 images with a size of consisting of 26 letter classes, which were taken by researchers by applying several research scenarios and limitations. The steps carried out are: dividing the ratio of the simulation dataset 80:20, and applying cross-validation (k-fold = 5). In this study, a real time testing using 2 scenarios was conducted, namely testing with bright light conditions of 500 lux and dim light of 50 lux with an average processing time of 30 frames per second (fps). With a simulation data set ratio of 80:20, 5 iterations were performed, the first iteration yielded a precision result of 0.758 and a recall result of 0.790, and the second iteration yielded a precision result of 0.635 and a recall result of 0.77, then obtained an accuracy score of 0.712, the third iteration provides a recall score of 0.746, the fourth iteration obtains a precision score of 0.713 and a recall score of 0.751, the fifth iteration gives a precision score of 0.742 for a fit score case and the recall score is 0.773. So, the overall average precision score is 0.712 and the overall average recall score is 0.747, indicating that the model built performs very well.\",\"PeriodicalId\":33690,\"journal\":{\"name\":\"Ilkom Jurnal Ilmiah\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ilkom Jurnal Ilmiah\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33096/ilkom.v15i2.1692.358-364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ilkom Jurnal Ilmiah","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33096/ilkom.v15i2.1692.358-364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

印度尼西亚手语(BISINDO)是印度尼西亚使用的手语之一。BISINDO的分类过程可以利用深度学习等先进的计算机技术来完成。使用BISINDO字母分类系统配合应用MobileNet V2 FPNLite SSD模型,使用TensorFlow对象检测API。本研究的目的是对BISINDO字母A-Z进行分类,并测量模型的准确率、精密度、召回率和交叉验证性能。使用的数据集是4054张图像,大小为26个字母类,由研究人员在几个研究场景和限制下拍摄。进行的步骤是:将模拟数据集的比例分割为80:20,并进行交叉验证(k-fold = 5)。在本研究中,进行了2种场景的实时测试,即500 lux的强光条件和50 lux的暗光条件下的测试,平均处理时间为30帧/秒(fps)。在仿真数据集比例为80:20的情况下,进行了5次迭代,第一次迭代的精度为0.758,召回率为0.790,第二次迭代的精度为0.635,召回率为0.77,准确率为0.712,第三次迭代的召回率为0.746,第四次迭代的精度为0.713,召回率为0.751。第五次迭代给出了适合分数情况下的精度分数为0.742,召回分数为0.773。因此,总体平均精度得分为0.712,总体平均召回率得分为0.747,表明所构建的模型性能很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classifying BISINDO Alphabet using TensorFlow Object Detection API
Indonesian Sign Language (BISINDO) is one of the sign languages used in Indonesia. The process of classifying BISINDO can be done by utilizing advances in computer technology such as deep learning. The use of the BISINDO letter classification system with the application of the MobileNet V2 FPNLite SSD model using the TensorFlow object detection API. The purpose of this study is to classify BISINDO letters A-Z and measure the accuracy, precision, recall, and cross-validation performance of the model. The dataset used was 4054 images with a size of consisting of 26 letter classes, which were taken by researchers by applying several research scenarios and limitations. The steps carried out are: dividing the ratio of the simulation dataset 80:20, and applying cross-validation (k-fold = 5). In this study, a real time testing using 2 scenarios was conducted, namely testing with bright light conditions of 500 lux and dim light of 50 lux with an average processing time of 30 frames per second (fps). With a simulation data set ratio of 80:20, 5 iterations were performed, the first iteration yielded a precision result of 0.758 and a recall result of 0.790, and the second iteration yielded a precision result of 0.635 and a recall result of 0.77, then obtained an accuracy score of 0.712, the third iteration provides a recall score of 0.746, the fourth iteration obtains a precision score of 0.713 and a recall score of 0.751, the fifth iteration gives a precision score of 0.742 for a fit score case and the recall score is 0.773. So, the overall average precision score is 0.712 and the overall average recall score is 0.747, indicating that the model built performs very well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
K-Nearest Neighbors Analysis for Public Sentiment towards Implementation of Booster Vaccines in Indonesia Feature Space Augmentation for Negation Handling on Sentiment Analysis Diabetes Mellitus Early Detection Simulation using The K-Nearest Neighbors Algorithm with Cloud-Based Runtime (COLAB) Comparative Study of Herbal Leaves Classification using Hybrid of GLCM-SVM and GLCM-CNN Decision Tree C4.5 Performance Improvement using Synthetic Minority Oversampling Technique (SMOTE) and K-Nearest Neighbor for Debtor Eligibility Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1