k近邻算法预测对印度尼西亚COVID-19存活患者的影响

Aris Martono, Henderi Henderi, Giandari Maulani
{"title":"k近邻算法预测对印度尼西亚COVID-19存活患者的影响","authors":"Aris Martono, Henderi Henderi, Giandari Maulani","doi":"10.33096/ilkom.v15i2.1234.240-249","DOIUrl":null,"url":null,"abstract":"This study aims to measure the prediction of survival of covid-19 patients with the best algorithm based on RMSE(Root Mean Square Error). The Covid-19 pandemic has lasted from December 2019 until now and is full of uncertainty about when this pandemic will end, so this research was carried out. In this study, the knowledge discovery database method was used by extracting data sets from Covid-19 patients from March 2020 to March 2021 for each province in Indonesia (Dataset from Kawal Covid-19 SintaRistekbrin) to predict survival during this pandemic as measured by the best algorithms include k-NN (k-Nearest Neighbor), SVM (Support Vector Machine), and/or Deep Learning. The measurement results using cross-validation and the optimal number of folds is 3 in the form of RSME, showing that the k-NN algorithm is an algorithm with RSME 0.101 +/-0.23 where the error rate is the lowest compared to the two algorithms above. Therefore, the k-NN algorithm was chosen as the algorithm for the predictive measurement of surviving Covid-19 patients.","PeriodicalId":33690,"journal":{"name":"Ilkom Jurnal Ilmiah","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of The Prediction of The K-Nearest Neighbor Algorithm on Surviving COVID-19 Patients in Indonesia\",\"authors\":\"Aris Martono, Henderi Henderi, Giandari Maulani\",\"doi\":\"10.33096/ilkom.v15i2.1234.240-249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to measure the prediction of survival of covid-19 patients with the best algorithm based on RMSE(Root Mean Square Error). The Covid-19 pandemic has lasted from December 2019 until now and is full of uncertainty about when this pandemic will end, so this research was carried out. In this study, the knowledge discovery database method was used by extracting data sets from Covid-19 patients from March 2020 to March 2021 for each province in Indonesia (Dataset from Kawal Covid-19 SintaRistekbrin) to predict survival during this pandemic as measured by the best algorithms include k-NN (k-Nearest Neighbor), SVM (Support Vector Machine), and/or Deep Learning. The measurement results using cross-validation and the optimal number of folds is 3 in the form of RSME, showing that the k-NN algorithm is an algorithm with RSME 0.101 +/-0.23 where the error rate is the lowest compared to the two algorithms above. Therefore, the k-NN algorithm was chosen as the algorithm for the predictive measurement of surviving Covid-19 patients.\",\"PeriodicalId\":33690,\"journal\":{\"name\":\"Ilkom Jurnal Ilmiah\",\"volume\":\"186 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ilkom Jurnal Ilmiah\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33096/ilkom.v15i2.1234.240-249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ilkom Jurnal Ilmiah","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33096/ilkom.v15i2.1234.240-249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用基于RMSE(均方根误差)的最佳算法来衡量covid-19患者的生存预测。Covid-19大流行从2019年12月持续到现在,对这场大流行何时结束充满了不确定性,因此进行了这项研究。在本研究中,知识发现数据库方法通过提取印度尼西亚每个省2020年3月至2021年3月的Covid-19患者数据集(来自Kawal covid - SintaRistekbrin的数据集)来预测本次大流行期间的生存,通过k-NN (k-Nearest Neighbor)、SVM(支持向量机)和/或深度学习等最佳算法进行测量。交叉验证的测量结果和最优折叠数为3的RSME形式,表明k-NN算法是一种RSME为0.101 +/-0.23的算法,与上述两种算法相比错误率最低。因此,我们选择k-NN算法作为预测Covid-19存活患者的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of The Prediction of The K-Nearest Neighbor Algorithm on Surviving COVID-19 Patients in Indonesia
This study aims to measure the prediction of survival of covid-19 patients with the best algorithm based on RMSE(Root Mean Square Error). The Covid-19 pandemic has lasted from December 2019 until now and is full of uncertainty about when this pandemic will end, so this research was carried out. In this study, the knowledge discovery database method was used by extracting data sets from Covid-19 patients from March 2020 to March 2021 for each province in Indonesia (Dataset from Kawal Covid-19 SintaRistekbrin) to predict survival during this pandemic as measured by the best algorithms include k-NN (k-Nearest Neighbor), SVM (Support Vector Machine), and/or Deep Learning. The measurement results using cross-validation and the optimal number of folds is 3 in the form of RSME, showing that the k-NN algorithm is an algorithm with RSME 0.101 +/-0.23 where the error rate is the lowest compared to the two algorithms above. Therefore, the k-NN algorithm was chosen as the algorithm for the predictive measurement of surviving Covid-19 patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
K-Nearest Neighbors Analysis for Public Sentiment towards Implementation of Booster Vaccines in Indonesia Feature Space Augmentation for Negation Handling on Sentiment Analysis Diabetes Mellitus Early Detection Simulation using The K-Nearest Neighbors Algorithm with Cloud-Based Runtime (COLAB) Comparative Study of Herbal Leaves Classification using Hybrid of GLCM-SVM and GLCM-CNN Decision Tree C4.5 Performance Improvement using Synthetic Minority Oversampling Technique (SMOTE) and K-Nearest Neighbor for Debtor Eligibility Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1