航空用AA2098铝合金搅拌摩擦加工表面质量分析

None Mauro Carta, None Pasquale Buonadonna, None Gianluca Marongiu, None Mohamad El Mehtedi
{"title":"航空用AA2098铝合金搅拌摩擦加工表面质量分析","authors":"None Mauro Carta, None Pasquale Buonadonna, None Gianluca Marongiu, None Mohamad El Mehtedi","doi":"10.56801/mme1000","DOIUrl":null,"url":null,"abstract":"FSP is a relatively new technique that changes the microstructure on the surface of the material to improve mechanical properties in the desired zone. This study aimed to investigate the surface quality of AA2098 sheets after being subjected to friction stir processing under different conditions of feed rate and rotational speed. A DoE analysis was developed with two factors, feed rate and rotational speed, and three different levels of 75, 100, 125 mm/min and 1000, 1250, 1500 rpm respectively, in order to assess the processed surface quality. The Sa parameter was used to represent the surface quality in different zones of the process, near entrance tool, middle and near exit tool, and ANOVA analysis was conducted. The results indicated that only the position and feed rate have a statistical influence on surface roughness. Additionally, the surface quality is strongly affected by the position relative to the entrance of the tool and the side (retreating or advancing sides). The roughness was found to be significantly lower on the advancing side rather than on the retreating side.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Friction stir processed surface quality of AA2098 aluminum alloy for aeronautical applications\",\"authors\":\"None Mauro Carta, None Pasquale Buonadonna, None Gianluca Marongiu, None Mohamad El Mehtedi\",\"doi\":\"10.56801/mme1000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FSP is a relatively new technique that changes the microstructure on the surface of the material to improve mechanical properties in the desired zone. This study aimed to investigate the surface quality of AA2098 sheets after being subjected to friction stir processing under different conditions of feed rate and rotational speed. A DoE analysis was developed with two factors, feed rate and rotational speed, and three different levels of 75, 100, 125 mm/min and 1000, 1250, 1500 rpm respectively, in order to assess the processed surface quality. The Sa parameter was used to represent the surface quality in different zones of the process, near entrance tool, middle and near exit tool, and ANOVA analysis was conducted. The results indicated that only the position and feed rate have a statistical influence on surface roughness. Additionally, the surface quality is strongly affected by the position relative to the entrance of the tool and the side (retreating or advancing sides). The roughness was found to be significantly lower on the advancing side rather than on the retreating side.\",\"PeriodicalId\":18466,\"journal\":{\"name\":\"Metallurgical and Materials Engineering\",\"volume\":\"188 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56801/mme1000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56801/mme1000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

FSP是一种相对较新的技术,它通过改变材料表面的微观结构来改善所需区域的机械性能。本研究旨在研究在不同进料速率和转速条件下,AA2098板材经搅拌摩擦加工后的表面质量。在75、100、125 mm/min和1000、1250、1500 rpm三个不同转速水平下,对加工表面质量进行了DoE分析。采用Sa参数表示加工过程中不同区域、近入口刀具、中间和近出口刀具的表面质量,并进行方差分析。结果表明,只有位置和进给速度对表面粗糙度有统计影响。此外,表面质量受到相对于刀具入口和侧面(后退或前进)的位置的强烈影响。发现前进侧的粗糙度明显低于后退侧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Friction stir processed surface quality of AA2098 aluminum alloy for aeronautical applications
FSP is a relatively new technique that changes the microstructure on the surface of the material to improve mechanical properties in the desired zone. This study aimed to investigate the surface quality of AA2098 sheets after being subjected to friction stir processing under different conditions of feed rate and rotational speed. A DoE analysis was developed with two factors, feed rate and rotational speed, and three different levels of 75, 100, 125 mm/min and 1000, 1250, 1500 rpm respectively, in order to assess the processed surface quality. The Sa parameter was used to represent the surface quality in different zones of the process, near entrance tool, middle and near exit tool, and ANOVA analysis was conducted. The results indicated that only the position and feed rate have a statistical influence on surface roughness. Additionally, the surface quality is strongly affected by the position relative to the entrance of the tool and the side (retreating or advancing sides). The roughness was found to be significantly lower on the advancing side rather than on the retreating side.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of Mechanical-Elastic Parameters of Reservoir Rocks with Respect to the Purpose of Permanent CO2 Storage Mechanical and Thermal Properties of Polyurethane-Palm Fronds Ash Composites Analysis of Friction stir processed surface quality of AA2098 aluminum alloy for aeronautical applications Review Of Grain Refinement Performance Of Aluminium Cast Alloys In Situ Production of B4C and FeV Enriched Composite Surface on Low Carbon Steel by Cast Sintering Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1